

Assessing Climate-Smart Agriculture's impact on Food Security: The case of Semi-arid Tanzania

Mahlet Degefu Awoke, Katharina Löhr, Anthony A. Kimaro, Marcos A. Lana, Johannes Hafner, Stefan Sieber

Introduction

- Climate change poses a significant threat to global food security, in developing countries like Tanzania where, 78% of the population relies on rain-fed subsistence farming (Rioux et al., 2017).
- Transforming agricultural systems to enhance productivity and

Results

Level of CSA adoption and determinants influencing farmers adoption decisions

resilience is crucial for sustained food security.

 Sustainable agriculture such as Climate-Smart Agriculture (CSA) are essential for enhancing food security and mitigating climate change impacts (Arif et al. 2020).

Objective

 To evaluate the determinants of CSA adoption and assess the impact of CSA on food security among smallholder farming households (HHs).

Methodology

Case study Area:

 Conducted in Kongwa and Chamwino Districts of Dodoma Region, semi-arid central Tanzania

Data collection

380 HH survey, 12 focus group discussions and 15 key informant interviews

Data Analysis

Figure 2: Percentage of households adopting CSA practices and the average number of CSA practices adopted (n=380)

Table 1: probit regression results: Determinants of CSA adoption (n=380)

Variables	Coefficient (SE)	Marginal Effects (SE)
Household head gender	-0.475*** (0.170)	-0.136*** (0.484)
Livestock ownership	0.394**(0.185)	0.114** (0.054)
Land access through leasing	-0.301** (0.153)	-0.086** (0.043)
Extension service availability	0.789***(0.183)	0.247*** (0.057)
Training access	1.226***(0.301)	0.315*** (0.057)
Farmer group membership	0.701***(0.222)	0.207*** (0.064)
Constant	-0.989**(0.464)	
Wald chi2(12)	90.96	
Prob > chi2	0.000	
Pseudo R2	0.265	

- Probit regression and Inverse probability weighted regression adjustment
- Content analysis

Figure 1: Methodological framework

CSA practices under evaluation includes: Integrated Soil Fertility

Robust standard errors (SE) in parentheses, Statistical significance level *** p<0.01, ** p<0.05, * p<0.1

Impact of CSA practices on food security

Table 2: Inverse p	probability weighted	d regression ad	ljustment result (n=380)
--------------------	----------------------	-----------------	--------------------	--------

	Average treatment effect			
Outcome variables	Adopters	Non- adopters	Average treatment effect (ATE)	on the treated (ATET)
HDDS	5.04	3.92	0.858*** (0.1788)	0.983*** (0.212)
HFIAS	5.52	8.41	-1.632*** (0.775)	-2.143** (0.894)
rCSI	4.06	6.56	0.002 (2.207)	-1.799 (1.159)
Annual farm income (usd)	551.66	260.45	151.669*** (43.845)	204.808*** (69.583)

Robust standard errors (SE) in parentheses, Statistical significance level *** p<0.01, **

Management, (ISFM), Crop Management (CM), Soil and Water Conservation (SWC), and Agroforestry (AF).

Conclusion and Outlook

- *p*<0.05, * *p*<0.1
- Furthermore, market distance and farmland size also impact food security.
- Adoption of CSA practices enhances food security, emphasizing the need for policies that support CSA dissemination.
- Effective dissemination requires strong institutional frameworks and supportive policies, which can be achieved through improved extension services and training programs.
- Additionally, indigenous knowledge, along with horizontal knowledge sharing (e.g. farmer groups) and networking, plays a significant role in advancing CSA practices.

