

1 Kwame Nkrumah University of Science and Technology, Dept. of Civil Engineering, Ghana // 2 University of Parakou, Dept. of Sci. and Techn. of Animal Prod. and Fisheries, Benin // 3 University of Parakou, Dept. of Crop Production / Lab. of Hydraulics and Environmental Modeling (HydroModE Lab), Benin // 4 Kwame Nkrumah University of Science and Technology, Dept. of Agricultural Engineering, Ghana // 5 Kwame Nkrumah University of Science and Technology, Dept. of Silviculture and Forest Management, Ghana

Kyei-Bafour⁴, Boateng Kyereh⁵

*Corresponding author. Tel.: +229 66167671; E-mail address: <u>atakoun.a@edu.wascal.org</u>

Introduction and objectives

- Developing integrated systems to manage soil fertility in the context of climate change has become a priority for our generation.
- This study examined the benefits, constraints, and factors that determine the adoption of cattle corralling practices in maize-based farming systems. The study answers the following questions:
- (i) what socio-demographic factors determine the different cattle corralling types adoption in rural Northern Benin? and,

constraints of cattle corralling practices

• (ii) how the benefits and constraints of cattle corralling practices are perceived among smallholder farmers?

Materials and methods

Study zone

Fig. 1. Location of household surveys.

- Gogounou municipality (Region of Alibori), **Bembereke municipality** (Region of Borgou), and Malanville municipality (Region of Alibori).
- Soils: Lixisols (FAO classification)
- One rainy season: May-October
- Mean annual rainfall: 900 and 1200 mm

Mean annual temperature: 27.5 °C

Typology of cattle corralling practices

Household survey and Data collection

• Surveys households of smallholder farmers across three agroecological zones of Northern Benin for data collection.

Dagneli (1998) : **392 sample**

E Kobolbox

- A-Demographic and socio-economic characteristics of the household
- B- Farm management, production method, and production objectives
- C- Cattle corralling practice

Analysis

- \checkmark The descriptive statistic,
- ✓ Factorial Analysis of Correspondence (FAC) followed by an Ascending Hierarchical Classification (AHC),
- \checkmark The binary model equation is presented as follows: **Yi = Xi \beta + \epsilon i**, Where:

- Yi is the variable that takes the value 1 if the farmer adopts cattle corralling and **0** if they do not adopt it; **Xi** is the set of explanatory variables; β represents the vector of coefficients associated with the explanatory variables Xi; *i* is the standard error. Results

- ✓ Continuous Overnight-Rotational Corralling (CORC)
- ✓ Discontinuous Overnight-Rotational Corralling (DORC)
- \checkmark Corralling contract (CC)

Determinants of the adoption of the practice of cattle corralling

				Model
Variable	Modality	В	Sig.	Evaluation
Agroecological zone	Zone 1	0.46	0.000***	70.90
	Zone 2	-1.39	0.000***	
Educational level	None	2.24	0.000***	74,2
Ethnicity	Bariba	3.41	0.000***	72,2
	Other	2.60	0.000***	
Access to Credit	Yes/No	0.65	0.004**	70.90
Awareness of corralling	Yes/No	3.65	0.000***	80.40
Access to extension services	Yes/No	-1.75	0.000***	73.20
Distance fields-house	Far	0.74	0.000***	75.80
	Medium	-2.68	0.000***	
	Near	2.15	0.000***	
Breeding mode	Sedentary	1.56	0.000***	70.90
	Semi-	-3.23	0.001***	
	Sedentary			
Production objective	Both	0.56	0.000***	95.90
	For sale	5.58	0.000***	

Characteristics and benefits of cattle corralling practices in northern Benin

Variables	Modalities	Study zone N (%)			
Corralling awareness	No	11.5	88.5% awareness, and		
	Yes	88.5	70.9% adoption level		
Adoption level	No	29.1			
	Yes	70.9	cattle corralling every year		
Manure spread after	No	48.7	(/4%), every 2 years (9%),		
corralling	Yes	51.3	and every 3 years (3%).		
Corralling Method	Overnight	26.8	55.54 ± 1.93 average number of cattle that can corral one hectare,		
	Rotative	43.6			
	Rotative/Overnight	15.6			
	Corralling contract	14.0			
	Field away from home	21.9	corralling period average		
Corralling Location	Fields near the house	50.5	was 3.44 ± 0.1 weeks.		
	No preference	27.6			

Typology: shaped by local socio-economic and environmental factors, suggests that tailored strategies can effectively address the unique challenges faced by different farming communities.

Determinants: targeted interventions can be designed to promote the widespread adoption of cattle corralling, thereby enhancing soil fertility and resilience against climate variability.

addressing the identified constraints is the potential to optimize these practices, leading to more sustainable agricultural systems and improved livelihoods for farmers.