Is species-specific diagnosis of porcine cysticercosis using loop-mediated isothermal amplification (LAMP) possible?

Md. Shahadat Hossain¹, Zhiru Li², Sarah Gabriël³, Phil Toye⁴, Gerald Reiner⁵, Ahimbisibwe Salaviriuse^{4,6}, Eddie Wampande⁶, Nicholas Ngwili⁴, Lian Thomas⁴, Franco H. Falcone¹ ¹Institute of Parasitology, Justus Liebig University Giessen, Germany ²New England Biolabs, Ipswich, Massachusetts, USA ³Department of Translational Physiology, Infectiology and Public Health, Ghent University, Belgium ⁴International Livestock Research Institute (ILRI), Nairobi, Kenya ⁵ Clinic for Swine - Herd Medicine and Molecular Diagnostics, Justus Liebig University Giessen, Germany ⁶ College of Veterinary Medicine, Animal Resources and Bio-Security, Makerere University, Uganda

BACKGROUND

Cysticercosis is a neglected zoonotic disease caused by larval stages of *Taenia solium* with a huge impact on public health (neurocysticercosis in the brain) and the livelihoods of small-scale pig farmers in many low-income countries. Diagnosis of porcine cysticercosis is mostly based on tongue palpation and carcass inspection, complemented by IgG-based serological analyses. The latter however have serious drawbacks, in particular regarding the

DNA	LAMP primers	
input	Tsol_cox1	Thyd_cox1
Tsol_5ng/µl		
Tsol_1ng/µl		
Tsol 1na/ul		

Sample	LAMP primers	
input	Tsol_cox1	Thyd_cox1
Se1	66	()
Se2	$\bigcirc \bigcirc \bigcirc \bigcirc$	6 6 6
Se3		666

RESULTS

specificity at the species level and above.

FIG.1 Disease cycle of *T. solium* in Uganda. Free-roaming pigs and eating undercooked pork by humans maintain the disease cycle in endemic areas.

⊕ Objective: Establish LAMP technology to distinguish porcine cysticercosis caused by *T. solium* from the related, co-endemic *T. hydatigena* (non-zoonotic).

FIG.6 Spiking negative pig serum (collected from Veterinary clinic, University of Giessen) with genomic DNA of *T. solium* and *T. hydatigena* for LAMP assay with both respective and alternative LAMP primers. Human DNA and TE buffer were used for control.

FIG.8 LAMP assay was performed using cyst fluid (1-6) collected and stored in ILRI/Uganda lab with both *T. solium* and *T. hydatigena* LAMP primers. Human serum and TE buffer (7,8) were used for control. Undiluted Cyst fluids (3 μ l) induced colour change even before heating at 65°C.

FIG.7 Pig serum collected by ILRI NZD team and archived at CDL, Makerere University. LAMP analysis was performed for apDia ELISA positive serum (Se1-Se3), and ELISA negative serum (Se4-Se5) with both *T. solium* and *T. hydatigena* cox1 primers. *T. solium* and *T. hydatigena* DNA used as positive control. Human serum and TE buffer were used as a negative control.

Sample	LAMP primers	
input	Tsol_cox1	Thyd_cox1
CF1		
CF2		
Tsol/ThyD DNA		
Hu Serum		
0.1X TE		

FIG.9 Cyst fluids (CF1-CF2) collected and stored in ILRI/Uganda lab tested with both *T. solium* and *T. hydatigena* LAMP primers for distinguishing types of cysticercosis in pigs. DNA of *T. solium* and *T. hydatigena* used as positive control. Human serum and TE buffer were used as a negative control.

METHODOLOGY

LAMP experiments were carried out in our laboratory in Giessen, with non-infected pig sera spiked with *T. solium* and *T. hydatigena* DNA. The saliva of humans was also used for spiking experiments. Once established the LAMP assay was used under field conditions in the ILRI/CDL lab in Uganda, using stored positive and negative pig sera (69) and saliva (10). Fresh serum and saliva samples were collected from 10 tongue cyst-positive pigs in Lamwo, Uganda, and tested with LAMP assay. The gold standard diagnostic, carcass dissection¹ was also performed for one tongue-cyst positive pig in Lamwo, Uganda.

FIG.10 Spiking human saliva for LAMP assay in our laboratory in Giessen with both *T. solium* and *T. hydatigena* DNA with both respective and alternative LAMP primers. Human DNA and TE buffer were used for control.

Sample	LAMP primers		
input	Tsol_cox1	Thyd_cox1	
Sa1			
Sa2			
Sa3	0 0		
Sa4	0 0		
Sa5	00		
ThyD CF	0 0	00	
Hu saliva	99		
0.1X TE			

FIG.11 Saliva collected from tongue-cyst positive pigs in Lamwo, Uganda tested with LAMP for both *T. solium* and *T. hydatigena* primers. *T. hydatigena* cyst fluid used as a positive control. Human saliva and TE buffer were used as a negative control.

SUMMARY & CONCLUSION

The cox1-based LAMP assay using cyst fluid can differentiate between *T. solium* and

FIG.2 Saliva and blood collection from cyst-positive pigs for LAMP-based analysis.

FIG.3 Lingual palpation² of a pig to identify cystpositive pigs. **FIG.4** Carcass dissection of a tongue cyst-positive pig in Kitgum, Uganda. A) Calcified cyst in tongue, B-C) Viable cyst in brain and heart surface, D) Dead cyst in muscle fibre.

FIG.5 LAMP-based diagnostic protocols³ for porcine cysticercosis. The LAMP reactions are incubated at 65°C for 30 minutes. Colour change from pink to yellow indicates the positive LAMP reactions.

T. hydatigena cysticercosis infection in pigs.

⊖T. solium / T. hydatigena LAMP primers are unable to detect the presence of parasitic DNA in blood or saliva of pigs without prior DNA extraction.

✓ LAMP may not be a suitable technology for detection of parasitic DNA in serum or saliva of infected pigs without DNA extraction, but can be used for identification of *Taenia* species using cyst fluid.

REFERENCES & ACKNOWLEDGMENTS

- Thomas et al., 2015. World Health Organization. Geneva PP, 47.
- 2. Guyatt and Fèvre, 2016. Trop Med Int Health, 21(10): 1319–1323.
- NEB Colorimetric LAMP assay. Link: https:// www.neb.com.

Commissioned by the German Federal Ministry for Economic Cooperation and Development (BMZ) and carried out by **ATSAF** e.V. on behalf of the Deutsche Gesellschaft fürInternationale Zusammenarbeit (GIZ) GmbH.

