Moving off the Farm: Does Farming Efficiency Matter? Insights from Long-Term Panel Data for Thailand

Kasem Kunasri¹,*, Manh Hung Do¹; Trung Thanh Nguyen¹

¹Leibniz University Hannover, Germany

1. Introduction

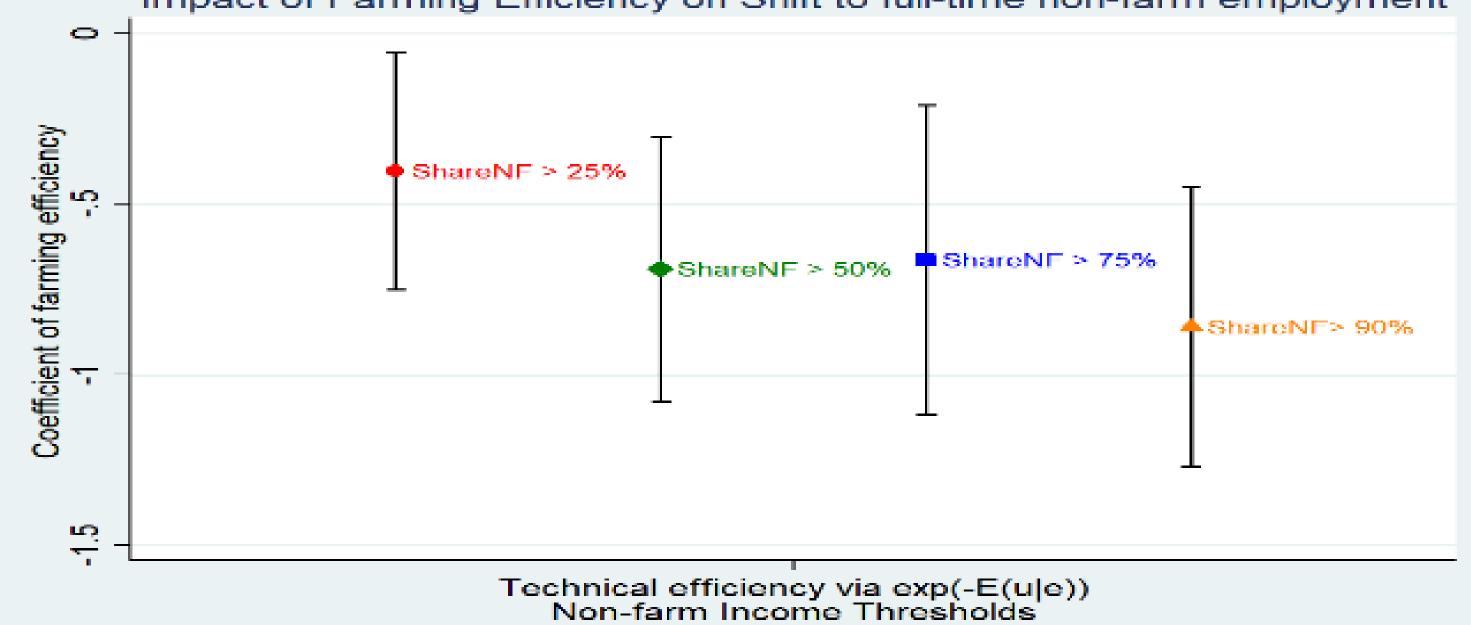
- •Agriculture is one of the most important sectors for ensuring food security and supporting rural areas in Southeast Asia and other developing countries[1].
- •As a crucial component of economic growth, agricultural transformation is characterized by the reallocation of labor from farm to non-farm sectors[2].
- •However, there is limited evidence on how farming efficiency impacts the allocation of labor from farm to non-farm sectors at the household level.
- •We explore the effects of farming efficiency on agricultural transformation and investigate its influence on the shift from full-time to part-time farming at the smallholder farm level.

4. Results

 farming efficiency positively and significantly affects the share of farm income, per capita income from farm activities, and per hectare expenditure on mechanization.

•while it has a negative and significant effect on the share of non-farm income, per capita non-farm income , and the share of livestock income in farm income.

Table 1: Impact of farming efficiency on agricultural transformation


Variables	SFIC	SNFIC	CPFI	CPNFI	SLSIC	PAME
Farming efficiency	0.523***	-0.524***	16.361***	-2.499*	-0.457**	4.374*
	(0.150)	(0.151)	(3.335)	(1.476)	(0.184)	(2.502)

2. Study area & data

- •The data collected at the household level by the Thailand Vietnam Socio-Economic Panel (TVSEP) survey.
- •Three provinces: Buriram, Nakonphanom, and Ubon Ratchathani.
- 10,549 observations collected from seven survey waves between 2007 and 2019.
- •Rainfall data (CHIRPS: 0.05°) is matched with village GPS data from the TVSEP dataset, aligned with each survey year.

Control variables	yes	yes	yes	yes	yes	yes
R-squared	0.223	0.220	0.198	0.042	0.070	0.070

Impact of Farming Efficiency on Shift to full-time non-farm employment

Fig. 2: Impact of farming efficiency on the shift of labor to the non-farm sector

- Farming efficiency decreases, and households increasingly transition from farming to non-farm activities
- The results remain consistent when considering different levels of household engagement in non-farm employment

Fig. 1.: Study sites in Thailand under the TVSEP project

3. Empirical model

•a true random-effects stochastic frontier model with the Mundlak's adjustment to estimate farming efficiency[3].

agricultural transformation indicators:

- 1) Share of farm income (SFIC)
- 2) Share of non-farm income (SNFIC)
- 3) Per capita farm income (CPFI)
- 4) Per capita non-farm income (CPNFI)
- 5) Share of livestock income (SLSIC)
- 6) Per hectare expenditure on mechanization (PAME)
- •We used heteroscedasticity based instrumental variable (IV) approach to control for endogeneity following Lewbel (2012) [4].

$$Agri_{it} = \beta_0 + \beta_1 F E_{it} + \beta_2 X_{it} + \varepsilon_{it}$$
(1)

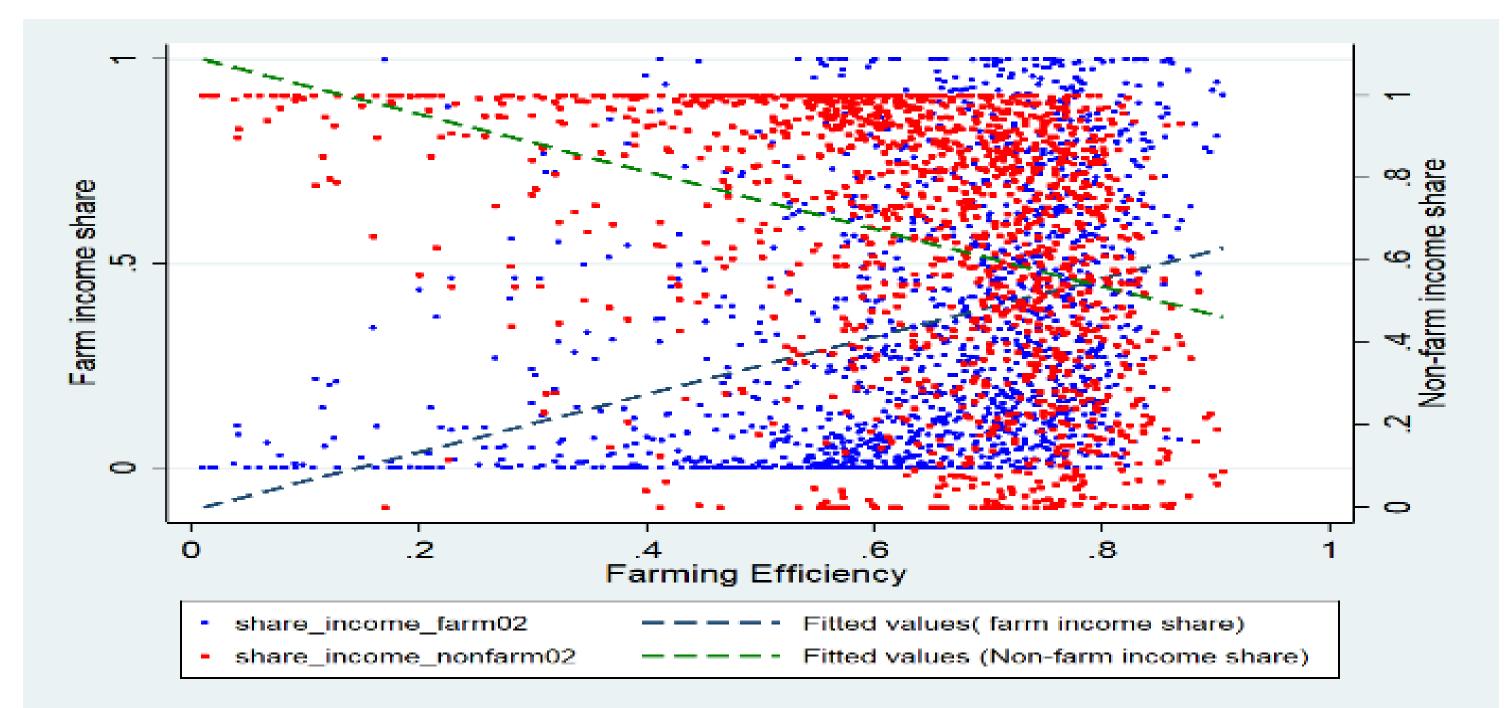


Fig. 3: Interrelationship between farming efficiency and shares of farm and non-farm income

5. Conclusion & implications

•Higher Farming efficiency pulls labor back into farming However lower Farming efficiency pushed them to towards non-farm sectors

•These results imply that more efficient farmers tend to stick to farming and apply mechanization in crop production, while less

 $FE_{it} = \delta + Agri_{t} T_{it} + \pi Z_i + \xi_i$ (2)

•Agri_ T_{it} = outcome variables for the i^{th} household • FE_{it} = early sowing dummy; β =constant and coefficient ; ε_{it} = random error • X_i = control variables at household and village levels • $Z_i \leq X_i$ (internal instruments); ξ_i = residuals •External instrument: one-year lagged No of extreme rainfall days efficient ones shift to non-farm sectors.

 policies designed to support and encourage farm enlargement (increasing farm size) and labour allocation should be stimulated to accelerate agricultural transformation.

References

[1] Rigg, J., et al. (2023). World Development. 107, 327–337
 [2] Amare, M., et al. (2023). Cand J Agr Econ. 71:69–87.
 [3] Nguyen, T. T., et al. (2023). Euro R of Agri Econ, 48(1), 207–248.
 [5] Lewbel, A. (2012). Journal of Business & Economic Statistics, 30(1), 67–80.

