# Hydroponic screening for salinity tolerance in Chenopodium quinoa (Quinoa): Physiological mechanisms





**ANNA TABEA MENGEN**, CAROLINE BLECKER, SANDRA M. SCHMÖCKEL University of Hohenheim, Institute of Crop Sciences, Dept. Physiology of Yield Stability, Stuttgart, Germany

### **BACKGROUND & OBJECTIVES**

- Increased pressure of salinity stress in agriculture, globally
- Use of salt tolerant crops to increase productivity in marginal environments
- Quinoa is a salt tolerant, potentially alternative crop
- $\rightarrow$  Identify salt tolerant quinoa accessions
- $\rightarrow$  Investigate which physiological mechanisms contribute to salt tolerance

## **METHOD - HYDROPONIC SCREENING**



### **Correlation of salt tolerance indices across traits**



### Maintenance of biomass in salt tolerant quinoa



Some accessions show increased biomass under salinity

- Maintenance or increase of dry biomass in response to salinity is positively correlated with an increase in Osmolality and K<sup>+</sup>/Na<sup>+</sup>-ratio in roots
- Negative correlation of dry mass ST with increase of root Na<sup>+</sup> concentration

### **CONCLUSIONS AND OUTLOOK**

Accessions which exhibit more increased osmolality and are able to maintain Na<sup>+</sup>/K<sup>+</sup>-ratio in the roots appear to maintain higher biomass under salt stress

#### Salt stress increases osmolality

Fig.3 Osmolality of different quinoa accessions under salt 800stress (200 mM) and control treatment. BLUE and 95% confidence interval.

Magnitude of increase and baseline value differs



Bundesministerium für Bildung

und Forschung

#### **Ion accumulation under salt stress**





- A stress treatment of 200 mM for a period of 7 days does not result in strong damage in the tested accessions
- $\rightarrow$  Investigate contribution of osmolality and ion accumulation to stress response after prolonged salt stress
- $\rightarrow$  Compare stress response in hydroponic systems to stress response in soil based systems (pot trial / field)

• K<sup>+</sup>/Na<sup>+</sup>-ratio differs between accessions

#### **ACKNOWLEDGEMENTS**

This project is part of the QuinAS project: "Development of sustainable and productive farming systems with non-conventional salttolerant crops for salt-affected areas using the example of the Aral Sea Basin", funded by BMBF, grant number 01DK23014A