

Tropentag, September 11-13, 2024, hybrid conference

"Exploring opportunities ... for managing natural resources and a better life for all"

## Managing emissions and nutrient losses from cattle manure through cascades with carbonized materials in Kenya

Ludy Keino<sup>1</sup>, Yuhao Zhu<sup>2</sup>, Dries Roobroeck<sup>3</sup>, Arusey Cheber<sup>4</sup>, Collins Oduor<sup>4</sup>, Ruth Njoroge<sup>5</sup>, Abigael Otinga<sup>5</sup>, Prasad Hendre<sup>1</sup>, Sonja Leitner<sup>4</sup>

<sup>1</sup>The Center for International Forestry Res. and World Agroforestry (CIFOR-ICRAF), Kenya

<sup>2</sup>Chinese Academy of Sciences, Inst. of Mountain Hazards and Environment, China

<sup>3</sup>International Institute of Tropical Agriculture (IITA), Kenya

<sup>4</sup>International Livestock Research Institute (ILRI), Mazingira Centre, Kenya

<sup>5</sup> University of Eldoret, Soil Science, Kenya

## Abstract

Improved use of manure is key to sustainable intensification of livestock systems and agricultural production across Sub-Saharan Africa. Common manure storage practices in heaps without covering are fraught with greenhouse gas and  $NH_3$  emissions which negatively impacts its climate footprint and fertiliser quality. Our research evaluates how amending manure with biochar (activated and non-activated) and charcoal at 10% and 30% influence GHG and  $NH_3$  emissions, manure nutrient content and  $CH_4$  and  $N_2O$  emissions factors (EFs). Incubations of freshly collected solid dung, excluding urine, were done for each treatment over 105 days under aerobic conditions. Cumulative  $\rm CH_4$  emissions from 10 % biochar (1.44  $\pm 0.13~{\rm g}~{\rm C}~{\rm kg}^{-1}~{\rm DW})$  and 30 % activated biochar (1.64  $\pm 0.22$ g C kg<sup>-1</sup> DW) were lower than emissions from control i.e. no amendment  $(2.40\pm0.34$  g C kg<sup>-1</sup> DW). Cumulative N<sub>2</sub>O emissions from 30 % non-activated biochar (11.1±1.62 mg N kg<sup>-1</sup>) and 30% activated biochar (15.8±2.09 mg N kg<sup>-1</sup>) were lower than the control (27.2±2.94 mg N  $kg^{-1}$ ). In addition, biochar (activated and non-activated) and 30 % charcoal addition significantly reduced  $NH_3$  cumulative emissions, with the 30% rates having lower  $NH_3$  emissions than the  $10\,\%$  rates. It was found that  $10\,\%$  activated biochar and  $10\,\%$  charcoal treatments had higher  $NO_3$  concentrations (+ 12 and + 3  $\mu$ g  $NO_3$  N g<sup>-1</sup> DW respectively) than the control. The 10% non-activated biochar, 30% biochar and charcoal treatments had lower NH<sup>+</sup><sub>4</sub>, NO<sub>3</sub>, and total N compared to the control. The N losses as  $N_2O$  were higher in control  $(0.19\pm0.02\%)$  than 30%biochar  $(0.07\pm0.01\%)$ , 30% activated biochar  $(0.11\pm0.01\%)$  and 30% charcoal  $(0.14\pm0.02\%)$ . In terms of  $NH_3$ , control treatment also had higher losses compared to the 30% concentrations. Emission factors of  $CH_4$  and  $N_2O$  for all biochar enriched manure treatment were lower than the IPCC default values for solid storage. This study illustrates the potential of biochar cascades in farming systems to improve management of GHG emissions and nutrient in manure, which should be further explored to assess its feasibility for smallholder farmers.

**Keywords:** Ammonia, biochar, charcoal, greenhouse gases, incubation studies, manure

**Contact Address:** Ludy Keino, The Center for International Forestry Res. and World Agroforestry (CIFOR-ICRAF), 30677 Un Avenue, 00100 Nairobi, Kenya, e-mail: l.keino@cifor-icraf.org