

Tropentag, September 11-13, 2024, hybrid conference

"Exploring opportunities ... for managing natural resources and a better life for all"

The ongoing journey of intercropping modelling: Key insights from the model developers and expert users on fundamental assumptions

Adam Muhammad Adam¹, N. Falconnier Gatien², Claas Nendel³, Marcos Lana⁴, Ken Giller⁵, Frank Ewert⁶, Carsten Marohn¹, Georg Cadisch¹, Rezai Ehsan Eyshi³, Jing Yu³, Mortis Laub⁷, Meine van Noordwijk⁸, Betha Lusiana², Antoine Couëdel², Vimbayi Chimonyo⁹, Michael Kermah¹⁰, Myriam Adam¹¹, Marc Corbeels¹², Amit Kumar Srivastava³, Sabine J. Seidel¹³, Thomas Gaiser¹³, Pacsu Simwaka⁴, Eric Koomson¹, Johanna Volk¹, Upendra Singh¹⁴, Jacques Fils Pierre¹⁴, Willington Pavan¹⁴, Alex C. Ruane¹⁵

¹University of Hohenheim, Inst. of Agric. Sci. in the Tropics (Hans-Ruthenberg-Institute), Germany ²AIDA, Univ Montpellier, CIRAD, Montpellier, France

³Leibniz-Centre for Agric. Landscape Res. (ZALF), Germany

⁴Swedish University of Agricultural Sciences, Crop Production Ecology, Sweden

⁵ Wageningen University & Research, Plant Production Systems, The Netherlands

⁶University of Bonn, Inst. Crop Sci. and Res. Conserv. (INRES), Germany

⁷ETH Zurich, Switzerland

⁸ The Center for International Forestry Res. and World Agroforestry (CIFOR-ICRAF), Kenya

⁹CIMMYT, Sustainable Agrifood Systems, Zimbabwe

¹⁰International Institute of Tropical Agriculture (IITA), Ghana

¹¹National University of Battambang, Fac. of Agriculture and Food Processing, Cambodia

¹²International Institute of Tropical Agriculture (IITA), Kenya

¹³University of Bonn, Inst. Crop Sci. and Res. Conserv. (INRES), Germany

¹⁴IFDC, United States

¹⁵NASA, Goddard Institute for Space Studies, United States

Abstract

Crop modelling and simulation have become increasingly important tools in predicting the future climate change on crop production and exploring new agronomic management strategies/cropping systems to enhance resilience to climate change. However, the reliability of these models critically depends on how well the fundamental assumptions and concepts of the model are represented. The significant variability in model results observed in previous multi-model comparisons of monoculture systems is mostly due to a strong mismatch between models in terms of their assumptions. This leads to discrepancies in model outputs, even when they are run under the same conditions of climate, soil, and management practices.

Additionally, the complexities of intercropping systems regarding light, water, and nutrient sharing concepts cannot be compared to monoculture systems. Since models have varying levels of accuracy in the representation of fundamental processes for resource sharing concepts, and intercropping is a very complex system, we aim to examine how the existing models represent intercropping systems in their entirety, including their assumptions, concepts, equations, and parameters. Most of these assumptions are rarely explicitly

Contact Address: Adam Muhammad Adam, University of Hohenheim, Inst. of Agric. Sci. in the Tropics (Hans-Ruthenberg-Institute), Garbenstr. 13, 70599 Stuttgart, Germany, e-mail: am.adam@uni-hohenheim.de

described in scientific publications, and sometimes they are not immediately apparent in the model documentation from model developers and experts users perspective.

This poster will provide detailed description of intercropping models routines, scale of application in time and space and unbiased insight into the key strengths and weaknesses of the existing models in terms of intercropping capabilities. In addition, the poster will highlight areas that may need further improvement regarding intercropping modelling for above-ground and below-ground resource sharing.

Keywords: Comparing models assumptions, intercropping routines, model structures