Performance of locally made low-cost evaporation cooling pad alternative to commercial pad

Yetenayet B. Tola¹, Tolcha Techane¹, Hayat Mohammed¹, Franz Roman², Oliver Hensel², Werner Hofacker³

¹Jimma University, Ethiopia; ²University of Kassel, Agricultural and Biosystems Engineering, Germany; ³University of Applied Sciences Konstanz

Germany

Introduction

- Rift valley of Ethiopia is a production belt of fruits and vegetables
- Its dry and hot climate has negative impacts on postharvest life of perishable crops
- Commercial mechanical refrigerators are expensive to afford by supply chain actors
- The dry and hot climate is an opportunity to apply low cost evaporative cooling (EC) system, however the wet pad not locally available and expensive
- This work attempted to develop a low-cost EC pad as a component of a low-cost EC system

Materials and methods

Fan with control system of air speed (1.1 and 2.6 m.s)

Water supply tank with water flow rate control system (flow rate 0.12 to 0.23 l/s)

Multiple data loggers to record temperature and RH before and after the wet pad

Wet pad made from galvanized sheet, + square steel + Cellulose pad made from False Banana fiber at different thickness (12 - 32 cm) and fiber orientation (Vertical vs Horizontal)

Results
$$\eta = \frac{T_{ab-o} - T_{cond.}}{T_{ab-o} - T_{wb-o}} \times 100$$

Table 1. Tem. reduction, RH increase and EC efficiency of wet pad in vertical and horizontal orientation of cellulose fiber

			Water flow	-	Temp after the pad ±	KH ambi	RH after th	WET BULB	EC± SE
rient.	(m/s)	pad (cm)	rate (l/s)	bient ±SE	SE	ent ± SE	e pad± SE	Temp	
	1.1	12	0.12	28.2	22	38.8			65.3
	1.1	18	0.15	27.4	23.1	57	86.8	21.2	69.4
	1.1	24	0.18	28.8	23.1	51.7	87.1	21.6	79.2
	1.1	32	0.23	27.6	22.3	54.4	83.8	21	80.3
	2.6	12	0.12	30.3	24.2	36.9	69.6	20.1	59.8
	2.6	18	0.15	27.6	22.7	57.6	86.4	21.5	80.3
	2.6	24	0.18	28	22.6	55.9	85.4	21.5	83.1
Verti	2.6	32	0.23	26.2	21.3	59.4	87.1	20.5	86.0
			Average	28.0±0.4	22.0±0.3	51.5±3.1	81.1±3.4		75.4±3.3
	1.1	12	0.12	29.6	22.8	42.5	70	20.6	75.6
	1.1	18	0.15	27.8	23.3	58.1	79.7	21.7	73.8
	1.1	24	0.18	27.7	23.1	57.4	84.9	21.5	74.2
	1.1	32	0.23	27.4	22.4	56.2	82.3	21	78.1
	2.6	12	0.12	28.5	22.9	52.7	72.3	21.5	80.0
	2.6	18	0.15	27.4	22.3	56.4	85.8	21.1	81.0
	2.6	24	0.18	27.9	21.9	52.3	72.2	20.9	85.7
Hori	2.6	32	0.23	28.2	22.2	57.2	86.5	21.3	87.0
			Average	28.1±0.3	22.6±0.2	54.1±1.8	79.2±2.4		79.4±1.8

Conclusion

- Air velocity, water flow rate and fiber orientation have effects on Evaporative Cooling efficiency
- The higher the air velocity, water flow rate and fiber thickness results in better Evaporative Cooling efficiency
- Both orientation of fiber results in better efficiency
- The study demonstrated possibility to develop low cost wetting pad from locally available materials
- Results of this study need to be validated under scale up condition

Acknowledgments

