Diagnosis of pesticides use on off-season irrigated crops in Goulbi Maradi Valley, Niger

Gabeye Djamilou¹, Martin Wiehle², Tankari Dan Badjo Abdourahamane¹

¹Abdou Moumouni University of Niamey, Department of Soil Science, Niger

²University of Kassel, Tropenzentrum / Organic Plant Production and Agroecosystem Ressources in the Tropics and Subtropics (OPATS), Germany

Introduction

This study aimed at diagnosing pesticides use on off-season irrigated crops in the Goulbi Maradi Valley, Niger, by particularly considering the educational level of farmers. More specially, it involves characterizing the different pesticides used on the site, estimating the proportions of unsuitable practices related to the use of pesticides, determining the proportion of discomforts and the skills to adopt in this case.

Findings

Table 1: Chart of pesticides inventoried on the site	Authorized	Unauthorized	Pi
--	------------	--------------	----

Chemical family Citation frequency (%) Active ingredient WHO Class Category Emamectin benzoate Avermectin Insecticide 56.3 Chlorpyrifos Organophosphorate + Organochlorate Insecticide 49.9 Ш Insecticide + Acaricide + Nematicide 41.2 Abamectin Ib Avermectin Imidacloprid Neonicotinoid 33.0 Insecticide Ш Lamda-cyhalothrin 32.5 Pyrethroid Insecticide Organophosphorate 21.8 Insecticide Ib prvos 14.8 Cypermethrin Pyrethroid Insecticide

Organic

ohibited

Research questions

Are the main pesticides used in Goulbi Maradi Valley different from others in this region? How do the proportion of unsuitable practices evolve in this area? Are they influenced by education level of producers? Is the relationship between unsuitable practices and education level of farmers significant? What are the types of discomforts inventoried and the skills to adopt as countermeasures?

Theoretical and conceptual framework

According to Youchaou & Alhou (2022), Zabeirou & al. (2018), Kanda & al. (2013), unsuitable practices of market gardeners have been observed and those are mainly due to their low level of education. Moreover, 100% of farmers use pesticides (including prohibited) pesticides) to fight against crops enemies.

Methodology

/ 1	7			
Glyphosate	Organophosphorate	Herbicide	III	12.2
Acetamiprid	Neonicotinoid	Insecticide	П	11.9
Thiram	Carbamate	Fungicide	II	7.1
Mlekovita	Organic (Bio)	Multipurpose	-	7.1
Paraquat Dichloride	Bipyridilium	Herbicide	II	5.4
Mancozeb	Avermectin	Fungicide	U	5.1
Dimethoate	Organophosphorate	Insecticide + Acaricide	II	3.6
Permethrin	Pyrethroid	Insecticide	II	2.0
Profenofos	Organophosphorate	Acaricide	II	1.6
Butachlor	Avermectin	Herbicide	III	0.7
Malathion	Organophosphorate	Insecticide	III	0.4
Tebuconazole	Triazole	Fungicide	II	0.4
Metalaxyl-M	Anilide	Fungicide	II	0.4
Total (%)				307,4

Table 2: Chart of independence test between unsuitable practices and education level of farmers in (left) and proportions of these practices in (right)

		Asymptotic				Unsuitable	Appropriate
	Value	df	Sig.(2-sided)			practices (%)	practices (%)
Bayes Factor	.002ª			Education level	Illitrate	87.0	13.0
Deerson Chi Causara	20 700h	Δ	000		Koranic	85.6	14.4
Pearson Chi-Square	39.799 ^b	4	.000		Primary	85.1	14.9
a. This analysis tests independence versus association, and assumes a				Secondry	76.9	23.1	
multinominal model and conjugate priors. b. Cells (10%) have expected count less than 5. The minimum				University 💛	29.4	70.6	
expected count is 2.87				Total		82.5	17.5
p-value =0.000 < 0.05	\rightarrow significant rel	ationship be	tween unsuitable				
practices (dependent v	variable) and edu	ucation level	(independent				

variable)

A survey was conducted in the municipalities of Djiratawa, Maradi 3, and Tibiri (Figure 1) with 692 farmers aged between 16 to 83 years. The information collected related to the socio-demographic characteristics of the respondents, the pesticides used and the practices associated with their handling. To this end, 12 sites were selected, including 3 in Djiratawa, 3 in Maradi and 6 in Tibiri (Figure 1). SPSS 20.0 is used for data processing while the Bayesian Loglinear Model is used for data analysis to determine the correlation between the unsuitable practices

and the education level of farmers.

Figure 2: Graph illustrating the type of discomforts (left), and countermeasures (right) inventoried

Conclusion

At the end of this work, it appears that Emamectin, Chlorpyrifos and Abamectin are the most important pesticides used in Goulbi Maradi Valley whereas Malathion, Tebuconazole, Metalaxyl are the least important. This study reveals the using of two active ingredients prohibited by Sahelian Pesticides Committee notably Paraquat Dichloride and Dichlorvos. In fact, there is a significant relationship between unsuitable practices and education level of the farmers and the

proportion of these practices increase while the education level of farmers decrease.

References list

Figure 1: Location of study sites

Kanda M., Djaneye-Boundjou G., Wala K., Gnandi K., Batawila K., Sanni A., & Akpagana K.(2013). Application des pesticides en agriculture maraichère au Togo. La revue Electronique en Sciences de l'Environnement Vertigo, 13(1), pp. 1-20.

Youchaou . T., A., & Alhou B. (2022). Caractérisation des pratiques phytosanitaires et des pesticides chimiques utilisés par les producteurs maraichers autour de deux écosystèmes aquatiques classes sites Ramsar au Niger : le lac Guidimouni et la mare de Tabalak. Int. J. Adv. Res. 10(10), pp. 585-598. DOI URL: http://dx.doi.org/10.21474/IJAR01/15527

Zabeirou H., Guero Y., Tankari Dan Badjo A., Haougui A. & Basso A. (2018). Farmer practices of pesticide use on market gardening in the department of Madaoua, Niger. EWASH & TI Journal, 2(2), pp. 63-74. http://revues.imist.ma/?journal=ewash-ti/

