Microbial dynamics in hierarchical aggregates of tropical soil amended with bambara groundnut seed residue biochar

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Chinyere Blessing Okebalama^{1,2}, Isaac Asirifi² and Bernd Marschner²

¹University of Nigeria, Dept. of Soil Science, Nigeria, ²Ruhr-Universität Bochum, Dept. of Soil Science/Soil Ecology, Germany

Introduction

• As a high-yield by-products (76 %) of bambara groundnut seed processing, the suitability of bambara seed residue (BSR) as a nutrient source for crop growth has been questioned due to suppressed microbial metabolism [1].

• We hypothesized that conversion of BSR to biochar would decrease the purported inhibitory properties and improve nutrient bioavailability in soil.

• Okebalama et al. [2] found an increasing availability of more nutrients (C, N, P, K and Mg) due to the addition of BSR biochar than BSR.

Results

• By means of the hierarchical aggregate model, our understanding of the mechanisms of microbial responses to reapplied biochar can be improved.

• Aim: To investigate the effects of repeated application of BSR biochar and NPK fertilizer on soil respiration and microbial nutrient cycling in soil aggregates.

Materials and methods

• Study location: Nsukka, Nigeria Derived savannah zone Humid tropical climate

• Soil description: Sandy loam textured Ultisol (USDA classification)

• Field experiment: 4x3 RCBD Four years (2015 to 2018) 2015/2016: Bambara residue rates of 0, 10, 20 & 30 t ha⁻¹ 2017/2018: Bambara biochar and NPK combination.

Fig. 2: Experimental field (224 m²)

• 2018 treatment description:

control, 300kg ha⁻¹ N₂₀P₁₀K₁₀, 20t ha⁻¹ Biochar, and NPK+Biochar

'Aggr = ***

 $T \times A = NS$

Aggr = ***

 $T \times A = NS$

• Biochar production: Pyrolysis in a metal barrel

Bambara seeds

Bambara biochar

Table 1: Soil and biochar chemical properties

	рΗ	Organic C Total N		C/N	Avail. P	Na^+	\mathbf{K}^{+}	Ca ²⁺	Mg ²⁺	
Sample	KCI	%	%		$mg kg^{-1}$		cmol	cmol∝ kg⁻¹		
Soil (2015)	4.0	1.26	0.07	18.00	10.26	0.04	0.05	3.00	0.40	
Soil (2017)	4.4	0.97	0.11	8.82	13.99	0.01	0.07	0.12	0.06	
Biochar	9.3	89.78	9.67	9.28	0.26	0.33	1.34	1.20	0.40	

Bambara residue

• Soil sampling: Undisturbed samples per plot Post-harvest (cucumber fruit)

• Laboratory analysis:

Aggregate size separation (dry-sieving method) Soil basal respiration (respirometer for 20 days incubation) Microbial biomass C & N (fumigation extraction method) Soil enzyme activities

• Data analysis: 4x4 factorial experiment in RCBD (4 treatments & 4 aggregates)

Fig. 6: Extracellular enzyme activity in amended soil aggregates fractions after 20 days incubation

Fractionation machine

Large macroaggregates Lma (4.75-2.00 mm)

> Medium macroaggregates Mma (1.00-2.00 mm)

Small macroaggregates Sma (0.25-1.00 mm)

Microaggregates, silt and clay; Mia (< 0.25 mm)

Four aggregate fractions

Rewetted soil samples

Conclusion

ab ab

σ

• The greater C mineralisation and C-cycle enzyme activities in < 0.25 mm than the macro-aggregates indicates longer turnover of the latter, contributing to SOM stabilization and soil nutrient retention.

• The substantial increase in microbial C and N with the NPK+BSB amendment demonstrates the importance of >1.00 mm macro-aggregates for more controlled, slower nutrient release and better nutrient retention of inorganic fertilizers.

• Therefore, regular applications of NPK+BSB are required to achieve long-term stabilization of SOM in macroaggregates and improvement of soil quality.

References

[1] Okebalama, C.B. et al. (2020). *Biological Agriculture and Horticulture* 36(4): 249–266.

[2] Okebalama, C.B. et al. (2022) Agro-Science 21(2): 53-65.