

Evaluation of volatile compounds in a value-added jerky by incorporating Ajwain and Thyme essential oils Elaine Anit^{1*}, Helga Hernández¹, Klára Urbanová¹

• Essential oils (EOs) are organic products extracted from aromatic plants containing volatile components possessing antimicrobial and antioxidant effects.

• They are **potential substitutes** for food additives and preservatives in the food processing industry.

Ajwain (Trachyspermum ammi L.)

Thyme (Thymus vulgaris L.)

Table 1. Principal constituents of TEO and AEO with their relative percentages of total **Chromatogram area and Retention Indices (RI)**

Compounds	RI Lit [®]	Ajwain		Thyme	
		RI♭	Area %	RI♭	Area %
a -Thujene	931	924	0.2	924	0.18
a -Pinene	937	930	0.3	931	0.26
β-Pinene	980	975	2.24	975	1.89
β-Myrcene	992	990	0.33	990	0.32
a -Terpinene	1018	1016	0.27	1017	0.27
p-Cymene	1027	1027	23.67	1028	18.32
γ-Terpinene	1062	1062	35.75	1065	26.78
Isoterpinolene	1086	1090	0.04	-	-
p-Cymenene	1090	1093	0.07	1093	0.08
	4400.0	4470	0.00		

Prague, Czech Republic

Family: Apiaceae **Origin:** Egypt, **India**, Iran, Pakistan & some regions of Central Europe **Description:** Widely known for its culinary use and pharmacological effects (e.g. gastrointestinal disorders, respiratory disorders, etc.)

Family: Lamiaceae **Origin:** Southern Europe & Northern Africa **Description:** Its essential oil is highly

recognized in food industry for its antimicrobial and flavouring properties.

• This study aimed to identify the volatile compounds in Thyme essential oil (TEO) and Ajwain essential oil (AEO) and quantify the chemical composition in our value-added jerky product.

MATERIALS & METHODS

Raw Material & Essential Oil

- Hovězí zadní (CZ) or Beef rump.
- Rectangular slices (5 cm x 2.5 cm x 1cm)
- Essential Oils (EOs): Ajwain Essential Oil & Thyme **Essential Oil**
- **Doses**: 0 mL, 0.75 mL, 1.5 mL

Image 1: Raw meat slices

Image 2: Hot air blanching

Image 3: Oil Treatment

OT 0.75

OT 1.5 M

LINONENE OXIGE	1103.7	11/2	0.07	-	-
Thymol	1290	1315	37.03	1307	46.98
Carvone	1242	-	-	1259	0.07

Note: ^aRI Adam's Library.^b Retention index Compound identification was based on Retention Index (RI) and comparison with NIST database.

- In Table 2, β-pinene was reported higher in Ajwain and Thyme OT samples for both doses due to the incorporation of sunflower oil which, may have increased its quantity (Adams, 2007).
- *p*-Cymene was recorded significantly higher in Ajwain HAB 1.5 mL.
- γ-Terpinene was higher for Thyme HAB 1.5 mL and significantly higher for Ajwain 1.5 mL.
- Thymol was observed higher in Thyme HAB samples and higher in Ajwain OT samples, which may be caused by the increase of the precursors (γ -Terpinene and p-Cymene) in thymol biosynthesis (Condors et al., 2013; Gomori et al, 2018)

Table 2. Quantification of the mean (area %) ± standard deviation (SD) of the compounds for both essential oils and treatment type

Pre-treatment type			Mean ± SD of Area % (n=6)				
Essential Oil	Treatment	Dose (mL)	β-Pinene	<i>p</i> -Cymene	γ-Terpinene	Thymol	
Thyme	Control	0	0.04 ± 0.09^{a}	7.72 ± 4.36 ^a	3.65 ± 2.03^{ab}	1.42 ± 1.49^{a}	
Thyme	HAB	0.75	0.22±0.12ª	11.55 ± 6.28 ^{ab}	4.28 ± 2.55^{ab}	12.87 ± 3.80 ^e	
Thyme	HAB	1.5	0.63 ± 0.13^{ab}	25.09 ± 5.42°	11.73 ± 3.33^{bcd}	11.89 ± 3.91 ^{de}	
Thyme	OT	0.75	2.29 ± 1.44^{cd}	24.53 ± 8.75 ^c	$9.45 \pm 4.85^{\text{abcd}}$	5.93 ± 1.90 ^{bc}	
Thyme	OT	1.5	1.30 ± 0.68^{abc}	19.94 ± 6.04^{bc}	7.08 ± 1.95^{abc}	11.63 ± 5.41 ^{de}	
Ajwain	Control	0	0.10 ± 0.16^{a}	7.05 ± 8.36ª	1.83 ± 2.44ª	0 ± 0^{a}	
Ajwain	HAB	0.75	0.46 ± 0.49^{a}	20.67 ± 5.15^{bc}	$9.59 \pm 2.48^{\text{abcd}}$	6.66 ± 1.72 ^{bc}	
Ajwain	HAB	1.5	1.14 ± 0.55 ^{abc}	40.84 ± 6.91 ^d	16.15 ± 7.66 ^d	7.81 ± 0.85^{bc}	
Ajwain	OT	0.75	1.75 ± 0.63^{bcd}	20.82 ± 2.48^{bc}	8.84 ± 2.98^{abcd}	5.26 ± 1.30 ^b	
Ajwain	ОТ	1.5	2.79 ± 0.38^{d}	27.47 ± 5.48°	12.52 ± 4.56^{cd}	8.82 ± 2.19 ^{cd}	

Sample Preparation

Note: HAB = Hot air blanching; OT = Oil Treatment. Values are given as mean \pm SD (n=6). Values represent means of three replicates/ trials. Values in the same column followed by different high case letters are significantly different at p < 0.05.

Fig. 2. The behavior of Means (Area %) vs. Doses (mL) per type of treatment and component

• Controls were almost zero in β -pinene, *p*-cymene, and γ -Terpinene, while other HAB and

Image 5: SPME fiber injected into vial

Statistica 13®

Statistical Analysis

- **ANOVA** for means behavior of area %
- **Tukey-HSD** for comparison of mean differences

Fig. 1. Process flow diagram for the experimental procedure

RESULTS

• In Table 1, four major compounds were found for Ajwain Essential Oil and Thyme **Essential Oil,** β -pinene, *p-cymene*, γ -Terpinene, and Thymol. • A total of 10 and 11 constituents were identified for both pure TEO and AEO, respectively.

- OT samples showed an increase in those components as the dose gets higher except for Thyme OT.
- OT treatments have shown a higher rise in Thymol as the dose increases and samples treated with thyme have the highest content of Thymol.

CONCLUSIONS

- Ajwain and Thyme comparatively possess similar volatile compounds.
- Ajwain essential oil can serve as a potential substitute for Thyme essential oil.
- Four significant volatile constituents were found β-pinene, p-cymene, γ-Terpinene, and **Thymol** as the remarkable constituents in both EOs.
- For further research, we will continue with the sensory evaluation of the best-ranked treatment types.

*Corresponding author:

Email: elaineanit.97@gmail.com **Phone:** +420 774 257 400

References:

Adams R. 2005. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Carol Stream 16:65–120. Condurso C, Verzera A, Ragusa S, Tripodi G, Dima G. 2013. Volatile composition of Italian Thymus capitatus (L.) Hoffmanns. et Link leaves. Journal of Essential Oil Research 25:239–243. Taylor & Francis.

Gömöri C, Vidács A, Kerekes EB, Nacsa-Farkas E, Böszörményi A, Vágvölgyi C, Krisch J. 2018. Altered Antimicrobial and Anti-biofilm Forming Effect of Thyme Essential Oil due to Changes in Composition. Natural Product Communications 13:1934578X1801300426. SAGE Publications Inc.