

Spatial and temporal patterns of agrometeorological indicators in maize producing provinces of South Africa

Christian Simanjuntak¹, Thomas Gaiser¹, Hella Ellen Ahrends², and Amit Kumar Srivastava¹

1) Institute of Crop Science and Resource Conservation, University of Bonn, Germany 2) Department of Agricultural Sciences, University of Helsinki, Finland

Introduction

- According to the IPPC 2021, Global warming is very likely to reach 1.8 ^oC under low gas emission scenario in 2081-2100.
- Reduction of total precipitation and increasing temperature has been reported in Central and South Africa.
- If the trend keep continues, it leads to reduction of agriculture production around 15% up to 50% in 2080.
- South Africa as the highest maize producer in the Africa continent. Maize become as staple food and source of socio-economic livelihoods.

Materials

- AgERA5 0.1^o x 0.1^o resolution
- 1990 to 2021
- Annual and Growing season
- Growing season (October-March)
- Historical maize yield data : the Statistic and Economic Analysis of Agriculture, Forestry and Fisheries Department South Africa
- Land Cover: Copernicus Global Land Service (CGLS)

- Historical agrometeorological need to be understand to assist mitigation, adaptation planning, and predict future impact of climate change.
- Issues: climate data misinterpreted and no report explicitly describing spatiotemporal patterns.

Objectives

Results

- Identify and quantify the trends in **agrometeorological indicators** for the period 1990-2021.
- Investigate the statistic relationship: 2. agrometeorological indicators and maize yield.
- Identify changes in spatial temporal 3 **patterns** during the maize growing season.

Distribution of land (maize-purple) in Free State, Kwazulu-Natal, field crop Mpumalanga, and Northwest.

Conclusions

- Temperature, precipitation, and wind speed trend was identified in all 1. regions during annual and maize growing season, except for solar radiation.
- The maize yield variability in Free State and Mpumalanga were influenced by all agrometeorological indicators, in contrast with Kwazulu-Natal.
- The leading mode of the variability of agrometeorological data further imply 3. that climate variability and extreme events uniformly affected the regions through out the regions.

2. Statistical relationship

Methods

- Prior test: autocorrelation (ACF and PACF)
- Trend Analysis: Mann Kendall test
- Magnitude: Sens's Slope
 - Land cover and elevation: linear regression
 - Temporal and maize yield: **Pearson** correlation
 - Dominant temporal spatial pattern: **EOF** (Empirical Orthogonal Function) using Climate Data Operators (CDO)

Download the paper Open access

Scan Me !!

• EOF analyze the change oscillations over time

1. Agrometeorological trend

-	Indicators	Free State		KwaZulu-Natal		Mpumalanga		North West	
Time		Z	β	Z	β	Z	β	Z	β
Annual	Temp	3.64**	0.04	3.26**	0.03	3.26**	0.03	2.82**	0.04
	Prec	-2.14*	-0.01	-1.29	-0.01	-0.61	-0.01	-1.66	-0.01
	Solar	1.70	0.01	0.82	0.01	0. 23	0	0.82	0.01
	Wind	2.75**	0.004	1.97*	0.002	0.61	0	2.04*	0.003
	Temp	3.06**	0.04	2.82**	0.02	2.04**	0.02	2.69**	0.04
Growing	Prec	-1.73	-0.02	-1.05	-0.01	-0.30	0	-0.91	-0.01
season	Solar	1.05	0.02	0.71	0.01	-0.03	0	0.31	0
	Wind	2.31*	0.01	1.29	0	0.14	0	1.83	0

The trend and the magnitude of Agrometeorological indicator annually and seasonally in major maize producing provinces.

Agrometeorological Free State Kwazulu-Natal Mpumalanga North West⁺

Temperature	-0.51**	-0.13	-0.28	-0.65**
Precipitation	0.60**	-0.02	0.43*	0.74**
Solar radiation	-0.60**	-0.22	-0.48**	-0.73**
Wind speed	-0.43*	0.24	-0.12	-0.43*
_				

Pearson correlation coefficient (r) between growing season data of agrometeorological variables and maize yield.

3. Spatial and Temporal patterns

EOF Mode Free State (1990-2021)

- Three dominant modes of EOF
- The first EOF patterns explains more than 50% of the variance
- Even positive loading >> spatially uniform
- Dipole pattern indicate opposite pattern
- The corresponding temporal pattern capture extreme event for the last 31 years >> highlighted with yellow band
- Mode-2 and -3 display dipole pattern where positive loading and negative loading are located apart

PC Component Free State (1990-2021)

Institut für Nutzpflanzenwissenschaften und Ressourcenschutz

forestry & fisheries Department:

Agriculture, Forestry and Fisheries

REPUBLIC OF SOUTH AFRICA

SCIENTIFIC REPORTS

natureresearch