

Integrating crop pollination management, native beekeeping, and silvopastoral systems to improve the cattle sector's sustainability in Latin America.

Narjes M; Cardoso JA; Burkart S. Alliance of Bioversity International and CIAT, Cali, Colombia. **CONTACT:** <u>s.burkart@cgiar.org</u>

Introduction

- » Intensification with monoculture pastures in Latin America: associated with biodiversity loss, (e.g., insect pollinators). Major concern for global food security and ecosystem functioning.
- » Inclusion of forage legumes in cattle production systems: may increase plant diversity within a pasture, while providing floral resources for pollinators which in turn boost crop and wild-plant pollination.
- » Sustainable intensification of cattle systems in Latin America: focus, e.g., on silvopastoral systems (SPS).

Objectives and Methodology

- » To provide an overview of forage legumes and agroecosystem management tools, available to cattle systems for the conservation of insect pollinators, optimization of crop-pollination services, and tackling legume forage-seed bottlenecks.
- » To discuss the opportunities and challenges of integrating principles of pollinator ecology and native beekeeping into SPS and artisanal and large-scale propagation of legume forage-seeds.
- » To provide interested stakeholders, policy- and decision-makers with a perspective on how such agroecosystems may be designed as mosaics or scaled into multifunctional landscapes.

» Bottleneck for sustainable intensification: limited availability of legume seed threats to scaling efforts.

» Literature review and expert consultation.

Results and analysis

The forage legume seed bottleneck

- » Adoption of forage legumes in tropical Latin America is very low.
- » Seed scarcity limits wider use of forage legumes in cattle production systems, which hinders the implementation of more sustainable cattle production systems.
- » Several projects, such as the Sustainable Colombian Cattle Project, support and promote the use of SPS. They have made significant advances (>35,500 hectares of SPS established in Colombia), but a widespread adoption of these systems may be limited by legume seed scarcity.
- » There exists a strong private tropical forage seed sector in Brazil and Mexico, its focus is set on *gramineae* seed production, which leaves legume (*fabacea*) seeds largely neglected.

Proposed interventions

<u>At the farm-level:</u>

- » Smallholder on-farm legume seed production
- » Integrated crop pollination
- » Meliponiculture and other forms of traditional beekeeping
- » Silvo-pastoral systems
- At the public and private sector level:
- » Landscape restoration approach
- » Large scale legume seed production through private seed sector

Required enabling (macro) conditions

» Cattle sector policies and development plans: inclusion of pollinator services and forage legume seed production in the payment schemes for ecosystem services (for e.g., SPS), incentives or new value chains with differentiated products.

Benefits of bee pollination on legume seed production

- » Most tropical forage legumes are self-pollinating but have an increased seed formation when their flowers (rich source of nectar and pollen) are visited by bees (Table 1).
- » Cattle production systems that include legumes (e.g., forage banks or grass-legume systems) are intensively managed to minimize flowering of plants (i.e., no pollination service). The set-up of legume seed production sites allows, (i) the creation of gardens for wild and managed bees, and other pollinators throughout the year; and (ii) overcome differences in flowering times.
- » Pollination gardens enhance the abundance, diversity and community composition of bees and other pollinators; visitation rates of bees to legume flowers, resulting in higher seed yields.

Table 1. Some examples of forage legume species with increased out-crossing when visited by different bee species.

Species	Plant growth habit	Pollinating bee species relevant for meliponiculture? [Yes/No]	Interaction type
Cajanus cajan	Herbaceous	Pollinating bee spp. unknown to the authors	Flower visitations with no reference to specific floral resource
Centrosema spp.	Herbaceous	Centris (Centris) aenea, Centris (Hemisiella) trigonoides, Centris (Centris) flavifrons, Centris (Trachina) sp.; [No]	
Chamaecrista rotundifolia	Herbaceous	Xylocopa frontalis; [No]	Foraging for pollen
Desmodium spp.	Herbaceous	Centris (Hemisiella) tarsata, Thygater aethiops; [No]	Flower visitations with no reference to specific floral resource
Gliricidia sepium	Tree	Xylocopa frontalis; [No]	Foraging for pollen
		Bombus pullatus; [No]	Flower visitations with no reference to specific floral resource
		<i>Melipona favosa, Tetragonisca angustula</i> ; [Yes]	

- » Access to credit and productive inputs for sustainable intensification strategies, smallholder legume seed production, and meliponiculture: crucial for continuous seed supply and harnessing of ecosystem services.
- » Access to/creation of knowledge: legume seed production, treatment and marketing, beekeeping, and honey production, or product differentiation.
- » Research: evaluation of new genetic material key for identifying additional legumes for sustainable intensification scenarios, seed production and integrated meliponiculture.

Conclusions

- » The development of pollinator friendly environments, based on forage-legumes and SPS and their introduction into cattle systems, brings several benefits.
- » Legume seed production: creation of different revenues, e.g.,

from bee and seed sales.

- » Interplay of pollinators and forage legumes: benefits can be further extended to the landscape level, affecting positively the yield of nearby pollinator-dependent crops.
- » Enabling conditions, including policies, payment schemes for ecosystem services, incentives or new value chains, must be in place for this approach to work.

Further reading

Narjes M; Cardoso JA; Burkart S. (2021) Promoting forage legume–pollinator interactions: Integrating crop pollination management, native beekeeping and silvopastoral systems in tropical Latin America. Frontiers in Sustainable Food Systems 5:725981. https://doi.org/10.3389/fsufs.2021.725981

This poster is licensed for use under the Creative Commons Attribution 4.0 International license (CC BY 4.0) 2022-08. Design: A. Yedra/CIAT. Photo: R. Grayson/Flickr (CC BY 2.0)

Acknowledgements

This work was supported by CGIAR Research Program on Livestock, CGIAR Initiative on Livestock, Climate, and System Resilience. CGIAR is a global research partnership for a food-secure future. Its science is carried out by 15 Research Centers in close collaboration with hundreds of partners across the globe.

Livestock, Climate

Poster presented at: