UNIKASSEL V E R S I T A T

Agroecological practices and the water planetary boundary Quantifying the limit of sustainable agricultural water use and the role of agroecological practices

Rike Becker^{1,2}, Jessica Keune³ and Christoph Gornott^{1,2}

Introduction

Increasing water withdrawal for irrigation purposes can put entire agroecosystems at risk. The central question in this context is: *how can* irrigation intensification take place without transgressing crucial **boundaries of sustainable water use?** Following the Planetary Boundary Concept^{1,2}, we assess meaningful indicators and tipping-points, which define and quantify sustainability limits at a local but also global level. In addition, we pose the question *if and which agroecological measures*

Research Questions

- What are meaningful local control and response variables to define sustainability limits for water extraction?
- What are tipping-points of agricultural water use, which lead to irreversible degradation of a water and agricultural system?
- How can we quantify these limits and tipping-points?
- How can we quantify the role of agroecological measures in helping to

5

stay within water sustainability limits?

Methods (work in progress)

Selecting study sides and examining their environmental dynamics. (*Review of literature and existing data bases*)

Lower Chenab Canal System, Punjab, Pakistan Approx. 16.000 km²

- Semi-arid, monsoon climate

Definition of locally meaningful control and response variables. (*Expert discussion*)

Examples for control and response variable and potential tipping-points:

Potential (local) control variables	Potential response variables	Potential tipping- points indicating boundary transgression
Minimum flow requirements	Loss of wetlands, reduced water resources for irrigation	River discharge < min. flow requirements
Glacier melt	River runoff	Reduction in melt water
Groundwater quality (nitrate concentration > threshold)	Loss of aquatic life, reduced fertilizer requirements (if re-use of water for irrigation)	Eutrophication, toxicity of GW too high for irrigation
Bare soil evaporation vs. plant evaporation	?	?
Soil moisture content	Drought stress, increase of irrigation demands, yield losses	?
Groundwater extraction rates (> threshold)	Increased yields, higher soil moisture, higher evapotranspiration rates, drop of ground water levels < threshold	Drop of GW tables below root zone access
Surface water extraction rates (> threshold)	Reduced river runoff	Flow regime shift
Increased water temperature	Loss of aquatic life	Threshold for algae bloom
Salt concentration in groundwater	Salt concentration in soil and plants, yield losses	Irreversible salt concentration
Irrigation water applied	Drop of GW levels, river flows, change in moisture fluxes, nutrient uptake by plant	Drop of GW tables below root zone access
Soil stability, erosion, sediment loads	Sediment load in streams	?

Setting local (sub-)boundary⁴ values and harmonizing them with global boundaries⁵. (Quantitative analysis using statistical and process-based models)

FROZEN MATER MATER MOSPHER	SURFACE GROUND SURFACE GROUND WATER WATER WATER
Examples Minimum glacier melt leading to long-term reduction in water availability.	Minimum river flow to maintain wetlands and
Minimum required precipitation – evaporation to guarantee minimum river flow.	aquatic life. Minimum GW recharge to replenish aquifers.

- Small-scale farming
- > 50% irrigated farmland
- Snow-melt dependent river flows
- Increasing water demand
- Shrinking irrigation water resources

Havelland, Brandenburg, Germany Approx. 1.700 km²

- Temperate, continental climate
- Large-scale farming
- Low water holding capacity of soils
- Drought prone region

Exploring and understanding (non-)linear systemic changes³ and dangerous effects.

(Quantitative analysis using statistical and process-based models)

Minimum required soil moisture content for crop/plant growth or maximum soil moisture content to not alter local or global moisture fluxes.

Quantifying the potential of agroecological practices for keeping agricultural water use within sustainability limits.

(Quantitative analysis using statistical and process-based models)

Agroecological practices	Potential to keep agricultural water use within sub-boundaries					
Cover crops						
Conservation tillage						
Crop rotation / crop choice						
Water conserving plants						
Drain water management						
Smart irrigation						
Water harvesting						
Organic fertilisers and pesticides						
Managing salinity						
Mulching						
Agroforestry						
Intercropping / relay-intercropping						

Expected results

The study will help to define locally meaningful sustainability limits, which indicate if the agroecological system under study is still operating within boundaries of sustainable water use. Furthermore it will help to highlight the potential of agroecological measures to expand agricultural activities within these limits.

References

[1] Rockström et al. (2009): A safe operating space for humanity. [2] Steffen et al. (2015): Planetary Boundaries: Guiding human development on a changing planet. [3] Dearing et al. (2014): Safe and just operating spaces for regional social-ecological systems. [4] Gleeson et al. (2020): The Water Planetary Boundary: Interrogation and Revision. [5] Zipper et al. (2020): Integrating the Water Planetary Boundary with water management from local to global scale. Photo Havelland: https://brandenburger.land/landkreise/havelland.html Water Planetary Boundary Symbols by Miina Porkka (Thank you Miina).

¹ University of Kassel, Department of Organic Agriculture ² Potsdam Institute for Climate Impacts Research (PIK) ³ Ghent University, Hydro-Climate Extremes Lab

Rike Becker: rike.becker@uni-kassel.de Christoph Gornott: gornott@uni-kassel.de, gornott@pik-potsdam.de Jessica Keune: Jessica.Keune@UGent.be