Impact of irrigation on rural farm household's nutritional outcome and potential irrigation-nutrition pathways in Kenya

Nixon Murathi Kiratu¹, Eefje Aarnoudse², Martin Petrick¹

JUSTUS-LIEBIG-🚃 UNIVERSITÄT ¹Justus-Liebig University Giessen, Inst. of Agric. Policy and Market Res., Germany 📗 ²Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Germany GIESSEN

Introduction

- Irrigation viewed as a plausible way of increasing agricultural production in in sub-Sahara Africa through the utilization of marginal lands, shift from rained-irrigation and as an adaptation to climatic changes.
- However, there is need to ensure that the increase in agricultural production is not an increase caloric supply but also addresses the regions food and nutritional insecurity.
- Unfortunately, literature shows that linkage of irrigation to nutritional outcomes remain vague and largely understudied.

Objectives of the study

- The aim was to study the effect of irrigation on 3 potential irrigation-nutritional pathways and 3 nutrition outcome of smallholder farm households'.
- The study hypothesised 3 potential irrigation-nutrition pathways
 - **Production pathway:** Irrigation increases production and allows growing of crops throughout the year increases production.
 - Women empowerment pathway: Irrigation empowers women especially on decision-making and control over resources.
 - o Income pathway: Irrigation increases smallholder farmers' income which leads to higher expenditures on nutrition.

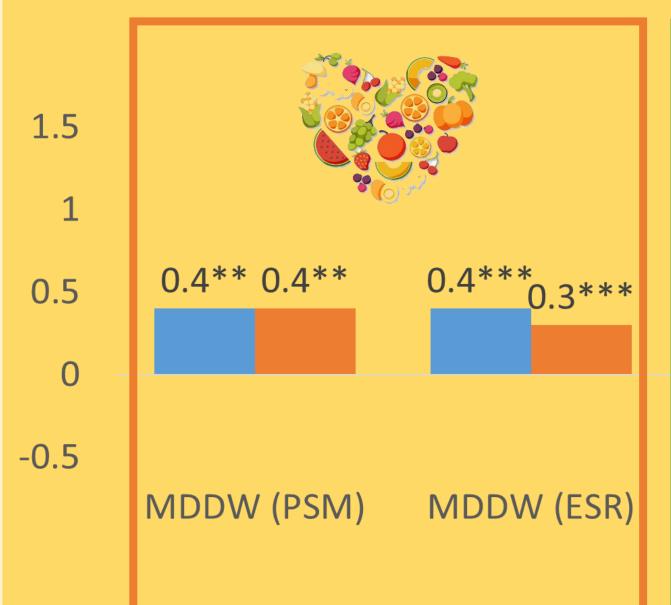
Materials and methods

- Data was from a household survey consisting 384 smallholder agricultural households in rural **Kenya** in **2021**
- Two econometric approaches were used to correct for the possible endogeneity:
 - Propensity score matching technique: to address bias arising from observable characteristics; and
 - Endogenous switching regression: to address bias from both observable and unobservable characteristics.

Conceptual framework and study area Socio-economic and institutional factors **Production pathway:** Production diversity Farm household Farm household nutrition: Non-irrigating farm Minimum dietary Socio-economic households Women empowerment diversity for women factors pathway: Abbreviated vomen empowerment in **Irrigating** farm Institutional agriculture index households factors Income pathway: Farm income Irrigation-nutrition pathways adapted from Herforth and Harris (2014) and Domènech (2015) n = 384

Results and discussion

Descriptive statistics


Key dependent variables	Pooled sample (n = 384)		Non-irrigators (n = 198)		Irrigators (n =186)	
	Mean	Median	Mean	Median	Mean	Median
MDDW	4.6	4.8	4.5	4.5	4.8	4.8
Production diversity	3.6	3.0	3.9	4.0	3.3	3.0
Farm income (USD)	1,368.1	441.1	746.6	184.8	2,029.6	890.1
Women Empowerment	0.7	0.7	0.7	0.7	0.7	0.7

- The measures of central tendency showed a **low dietary diversity** below the recommended threshold of 5 among the sample.
- The irrigators had a higher dietary diversity and farm income while the non-irrigators had a higher production diversity.
- The low production diversity and the high farm income by irrigators can be explained by the tendency to specialize in high value crops that responds to market demand.
- The women empowerment index was the same for the irrigators and non-irrigators.

1,334.6**

■ ATT ■ ATE

MDDW, production diversity and women empowerment

1.3*** 0.5*** 0.1*** -0.4* Production Women Production diversity (PSM) diversity (ESR) empowement (ESR)

- Irrigation has a positive and significant effect on the smallholder farmers' dietary diversity.
- The effect of irrigation on production diversity showed a mixed result in that the PSM results showed a negative effect but after controlling for the unobservable characteristics, it showed a slight positive and significant effect.
- Irrigation has a small but significant effect on women empowerment only after controlling for unobservable factors.

■ ATT ■ ATE PSM - Propensity score matching technique ATT – Average treatment effect on the treated

1,006.4*

Farm income (PSM)

Farm income

1,500.0

,000.0

500.0

0.0

ESM - Endogenous switching regression ATE Average treatment effect

- Irrigation had a positive and significant effect on the
- Both econometric approaches showed an almost similar

smallholder farmers' households farm income.

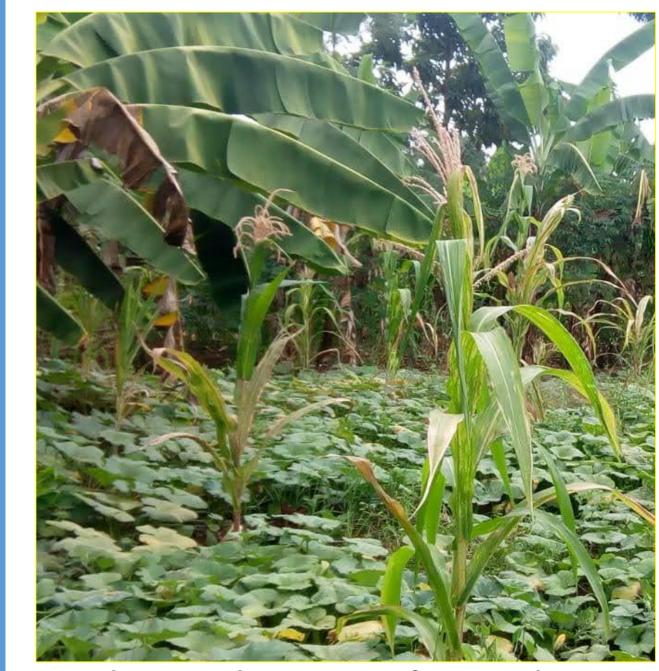
effect on the ATE

PSM - Propensity score matching technique ATT – Average treatment effect on the treated

ESM - Endogenous switching regression ATE Average treatment effect

1,362.1***

87.2***


Farm income (ESR)

TROPENTAG 2022 Hybrid conference

"Can agroecological farming feed the world? Farmers' and academia's views

Czech University of Life Sciences Prague, Czech Republic September 14-16

Production diversity: A farm with pumpkin, maize, bananas, cassava and avocado tree

Women empowerment pathway: Women sorting sweet potatoes

Income pathway: an enumerator looks at tomatoes that the farmer is sorting for sale

Conclusions

- Irrigation positively affects the nutritional outcomes of smallholder farmers' households.
- Irrigation also has an effect on the possible irrigation-nutrition pathways of **production** diversity, income and women empowerment.
- Women empowerment is a critical but understudied irrigation-nutrition pathway.

Recommendations

- Need for a multifaceted policy approach that is diverse on the impact pathways.
- Need for further analysis into the irrigation-nutrition impact pathways.
- Inclusion of more robust econometric methodologies.

References

- Domènech, L. (2015). Improving irrigation access to combat food insecurity and undernutrition: A review. Global Food Security, 6, 24-33
- Herforth, A., & Harris, J. (2014). Understanding and Applying Primary Pathways and Principles Brief #1. Improving Nutrition through Agriculture Technical Brief Series, (March).

Acknowledgement

We acknowledge the generous financial support from the German Academic Exchange Service (DAAD) and the Foundation Research **Panis** for funding this research.