

Combining mineral fertilizers with compost for sustainable maize production and reduction of greenhouse gas

Gebeyanesh Worku Zerssa and Bettina Eichler-Löbermann

Department of Agronomy and Crop Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, PO. Box 18059, Rostock, Germany

Introduction

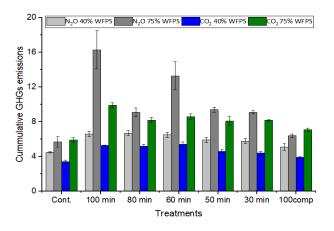
Increasing crop production without harming the global environment is a major challenge for agricultural sectors in the world

- The combined application of organic and mineral fertilizers has been as a tool for sustainable crop production and mitigating GHGs emissions
- However, interactive effects of fertilizers applied in different ratios on soil GHGs emissions are site specific

Objective

The current study aimed to analyze and identify the appropriate combinations of organic and mineral fertilizers which increase maize yield, and mitigate GHGs

Treatments: Cont: no input; 100 min: 100% mineral fertilizer, 80 min: 80% mineral fertilizer + 1.4 t ha⁻¹ compost; 60 min: 60% mineral fertilizer + 2.8 t ha⁻¹ compost; 50 min: 50% mineral fertilizer + 3.5 t ha⁻¹ compost; 30 min: 30% mineral fertilizer + 4.9 t ha⁻¹ compost, and 100 comp: 100% compost



- Flied experiment carried out for two growing seasons in Ethiopia
- Lab incubation experiment to measure GHGs at the University of Rostock
- Tow moisture levels were used (40 & 75% WFPS)

Results			
	1 st year	2 nd year	Average
Treatments	yield	yield	yield
		Mg ha⁻¹	
Cont.	8.5	7.5	8.0
100 min	9.0	7.6	8.3
80 min	9.0	8.1	8.6
60 min	10.4	9.2	9.8
50 min	10.1	8.6	9.2
30 min	9.1	9.2	9.3
100 comp	9.5	7.6	8.5

The average maize yield, was significantly (p < 0.05) increased by about **12 to 18%** in combined fertilizer compared to mineral fertilizer application alone

The combined fertilizer applications reduced;

- N₂O emission from 22 to 80% and
- CO₂ emission from 16 to 22% compared to the sole mineral fertilizer in wet Nitisol

Conclusions

The combined application of 30–50 kg N ha⁻¹ of mineral fertilizer and 3.5–4.9 t ha⁻¹ of compost significantly increased maize yields and mitigate GHGs emissions than mineral fertilizer at 100 kg N ha⁻¹ alone