

Microbiome-based inputs: a technology to enhance agricultural productivity while replacing traditional synthetic inputs?

Sophia Florence Scherer, Maria Eugenia Silva Carrazzone, Jorge Sellare (ZEF)

Research background

Microbiome-based inputs (MBI) make use of microorganisms like fungi, bacteria or archaea and their benefits.

MBIs are portrayed as a promising solution to stimulate agricultural productivity while replacing traditional fossil-fuel based inputs.

SABI

Research on this area, however, remains fragmented and focused only on specific traits of selected microorganisms and impact domains. Thus, there is a gap for exploring the potential of MBI innovations to promote a sustainable agriculture.

Research objective

Our aim is to summarize evidence on the contribution of MBIs to agricultural productivity and discuss their potential for the substitution of synthetic inputs in varying agricultural systems.

Research questions

- (i) Do MBI boost agricultural yield in different agroecological production systems?
- (ii) What is the potential of MBI to substitute traditional synthetic inputs?

Methodology

Systematic Literature Review with quantitative summary if possible

- 1. PRISMA protocol and definition of PICO (population, intervention, comparison, outcomes)
- 2. Semi-automated keyterm analysis with R-package "litsearchr" by Grames et al. 2019

3. Paper classification and data extraction through CADIMA

	Concept groups								
Search engine	Results	Input component	Input function	Outcomes	context				
Web of science	3682	Microb* OR fungi OR bacteria OR microorganism	Biofertili* OR biostimulant OR biocontrol OR bioinocu* OR "biological control" OR AM fungi OR PGP*	Carbon sequestration OR water quality OR	Plant OR				
Science direct	2117	OR mycorrhiza OR rhizob* OR gram positive OR gram negative OR archaea		profic OR cost efficiency OR cost benefit OR (fertilizer OR agrochemical OR NPK OR pesticide) AND (substitut* OR replace OR reduc*) OR nutrient leaching OR yield	agriculture				

4. Results summary using statistical methods, conditional on

data availability (Adapted from McKenzie JE et al. (2022), Table 9.5.a)

Non-quantitative method	Statistical method								
Narrative Systematization	Vote counting	Combination of P-values	Summary of effect estimates	Pairwise meta- analysis	Network meta- analysis	Subgroup analysis/meta- regression			

Contribution and expected outcomes:

- Provide summarized evidence on the potential of MBIs to contribute to sustainable agricultural production:
- Quantifying (if possible) the effects of MBI on (i) agricultural yields and (ii) substitution of fossil-based inputs, by agroecological system;
- Identify further literature gaps on the topic;
- Provide a basis for additional research on MBIs from the socio-economic perspective.

Contact details Florence Scherer Florence.scherer@uni-bonn.de

Sponsored by

