

Machinery ownership model for effective smallholder mechanized rice production in Ghana

Selorm Y. Dorvlo¹

¹Department of Agricultural Engineering, University of Ghana, Legon. sydorvlo@ug.edu.gh

UNIVERSITY OF GHANA

Introduction

Rice is a major staple in Ghana, which has seen various efforts to increase its production locally.

As of 2020, local rice production had increased from 721,465 tons in 2017 to 987,000 tons².

To ensure its continuous production, smallholder farmers are being introduced to conservation agriculture farming methods.

Though this method of farming is gradually being adopted, the level of drudgery in the farmers' production poses major problems that threatens the agenda to increase rice production sustainably. This study was formulated on the premise that if smallholder rice farmers can own or easily access machinery, it can address the problem of drudgery and increase productivity. **Objective:** To develop a machinery ownership model for smallholder farmers that is economically feasible and sustainable.

Methodology

Field data collection from 150 rice farmers from both the Northern sector (NS) and Southern sector (SS)

Data analysis

Results

Table 1: Analysed field data			Table2: Pro		
Parameter	NS Values	SS Values	the		
Gender of respondents (%)					
Male	66	63	Field Activi		
Female	34	37	Field prepa		
Average Age (years)	48 ± 6	43 ± 11			
Education status (%)			Planting		
No formal education	50	16.7	Husbandry		
JHS	24	47	riusbanury		
SHS	27	27	Wee		
Degree /Diploma 3		9	9		
Average farm size (Ha)	4.5 ± 1.9	2.3 ± 1.4	Ferti		
Land tenure (%)			Bird scaring		
Owned	84	0			
Leased	16	100	Harvesting		

oposed Machinery For Production used in e Models

ctivity	Type of machinery
reparation	13hp power tiller
ng	Drum seeder
ndry activities	
Weed control	Knapsack sprayer
Fertilizer	Knapsack sprayer
aring	Human labour
sting	Mini Combine

- Demographics
- Machinery for full mechanised production
- Mechanization models

Model*	Description
HM-B	The farmer hires all the machinery used for production
HM-T	The farmer hires all the machinery used for production
OM-B	The farmer owns all the machinery used for production
OM-T	The farmer owns all the machinery used for production
OHM-B	The farmer owns all the machinery used for production
	and operates hiring services
OHM-T	The farmer owns all the machinery used for production
	and operates hiring services
COM-B	A farmer cooperative owns all the machinery used for
	production

Current level of machinery use for production

HL: Human labour

NS SS

Table 3: Benefit cost ratio table

	FHM		FOM		FOHM		СОМ		FOHM	
	FHM-T	FHM-B	FOM-T	FOM-B	FOHM-T	FOHM-B	COM-T	COM-B	FOHM-2T	FOHM-2B
Fixed Cost										
Cost of machinery		-	43,000.00	43,000.00	43,000.00	43,000.00	2,150.00	2,150.00	43,000.00	43,000.00
Recurring cost										
Cost of farm input	6,627.00	<mark>5,956.00</mark>	4,525.00	3,854.00	4,525.00	3,854.00	4,525.00	3,854.00	9,050.00	7,708.00
Total Cost	6,627.00	5,956.00	47,525.00	46,854.00	47,525.00	46,854.00	6,675.00	6,004.00	52,050.00	50,708.00
Benefit Cost										
Revenue from farm produce	10,000.00	10,000.00	10,000.00	10,000.00	10,000.00	10,000.00	10,000.00	10,000.00	20,000.00	20,000.00
Revenue from machinery hire		-	-	-	2,000.00	2,000.00	-	-	2,000.00	2,000.00
TOTAL Benefits	10,000.00	10,000.00	10,000.00	10,000.00	12,000.00	12,000.00	10,000.00	10,000.00	22,000.00	22,000.00
NPV at 10% discount rate	20,725.62	24,848.63	- 5,449.40	- 1,326.40	6,839.73	10,962.73	31,686.96	35,809.96	40,481.23	48,727.24
BCR at 10% discount rate	1.51	1.68	0.92	0.98	1.10	1.17	2.06	2.40	1.43	1.56
NPV at 22% discount rate	13,232.90	15,865.36	- 13,766.47	- 11,134.01	- 5,920.10	- 3,287.64	19,717.14	22,349.60	15,559.34	20,824.25
BCR at 22% discount rate	1.51	1.68	0.74	0.78	0.89	0.93	2.01	2.32	1.22	1.32

- COM-T A farmer cooperative owns all the machinery used for production
- The farmer owns all the machinery used for production, FOHM-2B operates hiring services and crops twice in a calendar year
- The farmer owns all the machinery used for production, FOHM-2T operates hiring services and crops twice in a calendar year *Cropping under broadcasting (B) and Transplanting (T) methods.

Conclusions

- The best ownership model is where a cooperative owns machinery for use by its members (COM-B and COM-T).
- However the models FHM-B, FHM-T, FOHM-2B and FOHM-2T are lacksquarealso good ownership models.
- To ensure that these models work seamlessly, the farmers will have to be trained in machinery operation for the personal ownership model to be effective.
- In addition, there needs to exist a vibrant professional technical \bullet service sector which will ensure the machinery is properly maintained, as well as adequate spare parts availability.
- The study also envisage that when these models are promoted it will

lead to demand for local machinery manufacture, which can drive up local production of machinery.

Further studies on the factors that affect the choices of the local lacksquarefarmer, the constraints on local production and supply of equipment will be critical for the full operationalization of the models proposed in this study.

Reference

²FAO. (2022, Feb 17). FAOSTATS. Rice Production Data for Ghana. Retrieved

September 13, 2022 from http://www.fao.org/faostat/en/#data/QC

This research was funded by the University of Ghana, Office of Research, Innovation and Development (ORID) fund UGRF/12/ECG-039/2018-2019.