Impact of popular shade tree species on microclimate and cocoa productivity in agroforestry systems in Ghana

Theresa Kohl¹, Wiebke Niether¹, Issaka Abdulai²

¹ Professorship of Organic Farming with Focus on Sustainable Soil Use, University of Giessen,, Germany

Introduction

- Ghana accounts for 20% of global cocoa bean production ^[1]
- Cocoa (*Theobroma cacao L.*) is often cultivated in agroforestry systems

	Benefits of cocoa agroforestry	Drawbacks of cocoa agroforestry
0	Buffering extreme weather conditions ^[2,3]	Competition for water, nutrients, rooting space ^[3]
0	Carbon sequestration ^[2,3]	Slower vegetative development ^[6]
0	Optimal cocoa growth at low shade levels ^[4]	Decreased resilience under drought ^[7]
0	Longer productive lifetime under shade ^[5]	

Agroforestry could contribute to climate change adaptation and mitigation, but there is controversial evidence on its impact on yields

² Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), Department of Crop Sciences, University of Göttingen, Germany

Methods

- Study site: Boaso, Brong-Ahafo region, Ghana (Fig. 1)
- Data collection: April June 2022
- Eight common shade tree species (5 reps)
- Eight cocoa trees around each shade tree in three distance zones (Fig. 2)

Fig. 1: Location of the study site in Ghana.

Characterize above-ground morphology of common shade tree Aim: species in cocoa agroforestry systems and investigate their impact on microclimate under the canopy and on development and productivity of surrounding cocoa trees.

Fig. 2: Sampling design for cocoa trees around the shade tree. IZ = inner zone (within a 3-meter-distance to the stem), MZ = mid zone (under the canopy), OZ = outer zone (outside the canopy). Number = biological repetition.

- 1. Shade tree above-ground morphology Measurements: ____
 - 2. Microclimate under the shade tree canopy
 - 3. Cocoa tree development and productivity

Results

Shade tree above-ground morphology

Tab. 1: Above-ground morphology of the investigated shade tree species. Mean values and standard error. Last column shows results from a One-Way ANOVA of the impact of species on the parameter (* = p < 0.05; ns = not significant).

	Terminalia superba	Morinda lucida	Terminalia ivorensis	Milicia excelsa	Mangifera indica	Ficus capensis	Ricinodendron heudelotii	Alstonia boonei
Tree height [m]	15.44 ± 2.90	16.18 ± 6.02	17.20 ± 5.02	19.20 ± 5.93	15.42 ± 4.72	20.58 ± 6.77	18.44 ± 5.22	18.32 ± 5.76 ns
DBH [cm]	50.06 ± 21.62	49.84 ± 19.87	46.32 ± 14.51	99.38 ± 28.23	79.05 ± 16.46	126.83 ± 62.95	97.49 ± 27.56	95.81 ± 29.32 *
Canopy diameter [m]	12.09 ± 4.14	11.32 ± 1.88	14.33 ± 6.34	15.74 ± 3.63	15.82 ± 2.19	13.89 ± 8.64	13.42 ± 9.17	9.68 ± 3.65 ns
Crown shape	round	irregular	round – oval	round	weeping	umbrella	irregular	oval – irregular
Phenology	brevideciduous	evergreen	brevideciduous	brevideciduous	evergreen	brevideciduous	complete deciduous	brevideciduous

Microclimate under the shade tree canopy

Fig. 3: Buffering effect of shade tree species on temperature throughout the day. Difference to control in full sun. Significance groups a – d describe significant differences (Tukey (HSD): α = 0.05) during the critical period from 12 to 4 pm (shaded in grey).

Fig. 4: Buffering effect of shade tree species on relative humidity throughout the day. Difference to control in full sun. Significance groups a – e describe significant differences (Tukey (HSD): α = 0.05) during the critical period from 12 to 4 pm (shaded in grey).

Fig. 5: Absorption of Photosynthetically Active Radiation (PAR) through the shade tree. Measured in morning, noon and afternoon under clear skies. Mean values and standard error. Significance groups a - b describe significant differences (Tukey (HSD): α = 0.05).

Cocoa tree development and productivity

Tab. 2: Effects of shade tree species (A) and distance zones (B) on cocoa development and productivity.

Icons symbolize significance groups (Tukey (HSD): $\alpha = 0.05$) from low to high mean values. Last column shows results from a Two-Way ANOVA of the impact of species (A) or zone (B) on the parameter (* = p < 0.01; *** = p < 0.01; *** = p < 0.001; ns = not significant).

(Δ)		Terminalia	Morinda	Terminalia	Milicia	Mangifera	Ficus .	Ricinodendron	Alstonia	
(~)		superba	lucida	ivorensis	excelsa	Indica	capensis	heudelotii	boonei	
	Cocoa Development									
	Tree height	 			-	-		-	-	*
	DBH									ns
	Canopy health	0 - 00	00 - 000	00 - 000	0 - 00	0 - 00	0 - 00		Ø	***
	Cocoa Productivity									
	Flowering intensity									*
	Cherelles									***
	Share of damaged cherelles		Ó		Í					*
	Mature pods		Ó		0	Ó	Ø		Ó	*
	Share of black pods	(I)	Ô		Ô	Ó	Ô		(A)	ns

B)		Inner Zone	Mid Zone	Outer Zone	
	Cocoa Development				
	Tree height				* * *
	DBH	\bigcirc	\bigcirc		***
	Canopy health			000	***
	Cocoa Productivity				
	Flowering intensity				***
	Cherelles			1 - 11	*
	Share of damaged cherelles				ns
	Mature pods	Ó	00	000	* * *
	Share of black pods	(Ø	Ô	*

Ripe pods	0	Ó				ns	Ripe pods		***
Share of big ripe pods						ns	Share of big ripe pods		ns

Conclusions

- No major differences in above-ground morphology between the shade tree species.
- M. excelsa and M. indica have the densest canopies and therefore the highest PAR absorption rates and microclimate buffering effects.
- Cocoa tree development and productivity are more affected by the distance to the shade tree than by the shade tree species.
- Increasing cocoa growth and productivity from inner zone to outer zone could indicate unfavourable growing conditions directly under the shade tree

 GHANA COCOA BOARD, 2018: Manual for cocoa extension in Ghana. CCAFS manual. NIETHER, W., J. JACOBI, W. J. BLASER, C. ANDRES & L. ARMENGOT, 2020: Cocoa agroforestry systems versus monocultures: a multi-dimensional meta-analysis. Environ. Res. Lett. 15 (10), 104085. BLASER-HART, W. J., S. P. HART, J. OPPONG, D. KYEREH, E. YEBOAH & J. SIX, 2021: The effectiveness of cocoa agroforests depends on shade-tree canopy height. Agriculture, Ecosystems & Environment 322, 107676 GAIXLION L. C. MCDAVID, E. LOREZ & L. SPENCE, 1996: The effect of irradiance level on cocoa. (Theobroma caccoa L): L. Growth 	 [5] OBIRI, B. D., G. A. BRIGHT, M. A. MCDONALD, L. C. N. ANGLAAERE & J. COBBINA, 2007: Financial analysis of shaded cocoa in Ghana. Agroforest Syst (71), 139-149. [6] SCHNEIDER, M., C. ANDRES, G. TRUJILLO, F. ALCON, P. AMURRIO, E. PEREZ, F. WEIBEL & J. MILZ, 2017: Cocoa and total system yields of organic and conventional agroforestry vs. monoculture systems in a long-term field trial in Bolivia. Ex. Agric. 53 (3), 351-374.[8] Zhu, Xiai et al. (2020): Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: a review of evidence and processes. In: Plant Soil 453 (1-2), S. 45–86. 	JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN
and leaf adaptations. Tropical agriculture (73), 23-28.	[7] ABDULAI, I., P. VAAST, M. P. HOFFMANN, R. ASARE, L. JASSOGNE, P. VAN ASTEN, R. P. RÖTTER & S. GRAEFE, 2018b: Cocoa agroforestry is less resilient to sub-optimal and extreme climate than cocoa in full sun. Global change biology 24 (1), 273-286.	GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN IN PUBLICA COMMODA GÖTTINGEN SEIT 1737