

Tropentag, September 15-17, 2021, hybrid conference "Towards shifting paradigms in agriculture for a healthy and sustainable future"





# Coping with Erratic Rainfall: A Model Approach for Improving Maize Sowing Date

Nuttapon Khongdee<sup>1</sup>, Thomas Hilger<sup>1</sup>, Wanwisa Pansak<sup>2</sup>, Georg Cadisch<sup>1</sup>

<sup>1</sup> University of Hohenheim, Inst. of Agric. Sci. in the Tropics (Hans-Ruthenberg-Institute), Germany <sup>2</sup> Mahidol University, Faculty of Environment and Resource Studies, Nakhon Pathom, Thailand



# Introduction



Rainfall variability

Temperature variability

Frequent extreme weather

### **Climate change**

### **Objectives of this study**

(i) evaluating the ability of the Water, Nutrient and Light Capture in Agroforestry Systems (WaNuLCAS) model for predicting maize performance under rainfed conditions, (ii) assessing the performance of maize under various sowing date options to sustain maize yields, and (iii) identifying the best sowing option under irregular rainfall.

**Maize production** 

- Drought and heat stress
- Low maize yield
- Management changes
- > Worldwide food insecurity

#### WaNuLCAS or "Water, Nutrient and Light Captured in Agroforestry Systems"



## Materials and Methods

#### 1. Location and data collection

- The experiment was conducted at Phitsanulok province, Thailand (16°54'21.6"N 100°32'31.2"E)
- Two years of maize (Syngenta 6248) data, soil parameters and weather conditions (2017 and 2018) were collected.
- Historical (50 yrs) weather data of Phitsanulok province received from Thai Meteorological Department were used to investigate the effects of rainfall variability on maize yields.

#### 2. WaNuLCAS structure and input data



#### 3. Treatment description and scenarios

Scenarios used for simulating impact of sowing dates on maize grain yield with WaNuLCAS

| Scenarios (S)                                          | Description                                                                                                                                       |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| S1 - Farmers' practice (FP, control)                   | Maize sowing mid-July equal to Julian day 195                                                                                                     |
| S2 - 15 days before FP                                 | Maize sowing early July equal to Julian day 180                                                                                                   |
| S3 - 30 days before FP                                 | Maize sowing mid-June equal to Julian day165                                                                                                      |
| S4 - 45 days before FP                                 | Maize s sown early June equal to Julian day 150                                                                                                   |
| S5 - Staggered planting                                | Maize sowing differed in each zone; timing according to sowing dates of S1-S4                                                                     |
| S6 - Rainfall predictions for 21 <sup>st</sup> Century | Maize growing was simulated using rainfall projections of the northern region of Thailand for the 21 <sup>st</sup> century (Tangang et al., 2019) |

Modelling

approach



### Results

Relationship between predicted and observed maize grain yield: (a) calibration, (b) validation. Data were collected during 2017 (validation) and 2018 (calibration) at Wang Thong district, Phitsanulok province, Thailand



Simulated maize grain yield as affected by four sowing dates (Farmers practice (FP, = Mid of July) and 45, 30,15 days before FP), staggered planting (based on all sowing dates) and five rainfall categories for the Phitsanulok province, Thailand

Simulated cumulative maize grain yield as affected by sowing date (Farmers' practice (FP, = Mid of July) and 45, 30,15 days before FP), staggered planting (based on all sowing dates) using historic rainfall data of the Phitsanulok province, Thailand. Yield of maize is categorised intro three groups: above (>5%), around (±5%) and below (>5%) average yield

Impact of rainfall projections for the 21<sup>st</sup> century and sowing date on maize yield. Rainfall projections for the Phitsanulok of Thailand are based on Tangang et al., (2019)

### Conclusion

- The WaNuLCAS model was able to predict maize yield well (Goodness-of-fit statistics: R<sup>2</sup>=0.83; EF=-0.61; ME=0.16; CRM=0.02; CD=0.56) (i)
- (ii) Sowing maize 30 days before farmer's practice or staggered planting are suitable options for areas with irregular rainfall conditions, the later particularly when distinct weather forecasts are not possible. Both options reduced the risk of crop failure while maintaining yields under these conditions.