

Rationale and Motivation of Rural Farmers in Adopting Floating Agriculture in The Haor Region, Bangladesh

Khondokar Humayun Kabir^{1&2}, Mohammed Nasir Uddin¹ & Sourav Sarker¹

¹ Department of Agricultural Extension Education, Bangladesh Agricultural University, Mymensingh;

² Research Unit Sustainability and Global Change; University of Hamburg (UHH), Germany

INTRODUCTION

- 230 rivers crisscross & 80% of Bangladesh is flood plain [Kamal et al. 2018].
- Sporadic flash floods in wetland areas (*Haor*) create a submerged situation that lasts 7 to 8 months, limiting agricultural use [Hussain and Salam 2007; Hossain 2014].
- Floating agriculture is a promising climate-smart practice in locations where regular land usage is difficult due to flooding, but it has a low adoption rate [Chowdhury & Moore, 2017].

Objectives of the study

 Our research aims to identify the factors that motivate and barriers that inhibit the adoption of floating agriculture.

Fig. 1. Showing different stages of floating bed cultivation (Image credit: Fahmida Akter)

METHODOLOGY

Study area: Karimganj Upazila (sub-district), Kishoreganj

Population & Sampling: 1200 farmers; 120 farmers (10% of the population); random sampling

Data collection February 2020; Focus Group Discussion (FGD); Key Informant Interview (KII);

methods & instrument 'Survey; Structured & semi-structured interview schedule

Theory: Rogers five stages innovation-decision model [Rogers, 2003]

Focus question: Whether or not farmers practiced floating bed cultivation over the last twelve

months

Data analysis: Binary logistic regression and rank order; SPSS-25

FINDINGS

- The adoption rate is unsatisfactory.
- Education, trialability and observability are the demotivating factors
- Training related to floating agriculture, credit received, communication behavior, and complexity are the motivating factors
- Climatic and non-climatic factors inhibit the adoption of floating farming.

Fig. 2. Flood Prone areas of Bangladesh and study location

Factors influencing the motivation to adopt floating agriculture

В	S.E.	Wald	df	Sig.	Exp (B)	
-0.15*	0.07	4.44	1	0.03	0.85	
1.53**	0.61	6.17	1	0.01	4.65	
2.26***	0.62	13.20	1	0.000	9.63	
0.39***	0.10	15.11	1	0.000	1.48	
-0.32*	0.15	4.74	1	0.02	0.72	
-0.12**	0.03	9.93	1	0.002	0.88	
3.11	4.423	.496	1	0.48	22.49	
Cox-Snell R ²		0.482				
ke R ²	0.572					
	-0.15* 1.53** 2.26*** -0.39*** -0.32* -0.12** 3.11 R ²	-0.15* 0.07 1.53** 0.61 2.26*** 0.62 0.39*** 0.10 -0.32* 0.15 -0.12** 0.03 3.11 4.423 R ²	-0.15* 0.07 4.44 1.53** 0.61 6.17 2.26*** 0.62 13.20 0.39*** 0.10 15.11 -0.32* 0.15 4.74 -0.12** 0.03 9.93 3.11 4.423 .496 R ² 0.	-0.15* 0.07 4.44 1 1.53** 0.61 6.17 1 2.26*** 0.62 13.20 1 0.39*** 0.10 15.11 1 -0.32* 0.15 4.74 1 -0.12** 0.03 9.93 1 3.11 4.423 .496 1 R ² 0.482	-0.15* 0.07 4.44 1 0.03 1.53** 0.61 6.17 1 0.01 2.26*** 0.62 13.20 1 0.000 0.39*** 0.10 15.11 1 0.000 -0.32* 0.15 4.74 1 0.02 -0.12** 0.03 9.93 1 0.002 3.11 4.423 .496 1 0.48 R ² 0.482	

Barriers faced by Haor farmers in adopting floating agriculture

KEY MESSAGES

- Characteristics of an innovation important for its adoption
- Farmers with a higher level of education should be prioritized for future development programs
- Communication, training facilities along with financial support need to be arranged
- Support services need to work on mitigating the current challenges

Adoption decision

within last twelve months

REFERENCES Fig. 3. Showing adoption decision of floating agriculture

- Chowdhury, R. B., and Moore, G. A. (2017). Floating agriculture: a potential cleaner production technique for climate change adaptation and sustainable community development in Bangladesh. Journal of Cleaner Production, 150, 371–389.
 Hossain, M. A. (2014). Floating cultivation: an indigenous technology for adapting to water logging situation towards sustainable livelihood security in the low-lying areas of Bangladesh. Journal of Bioscience and Agriculture Research, 01(01), 56-61.
- Hossain, M. A. (2014). Floating cultivation: an indigenous technology for adapting to water logging situation towards sustainable livelihood security in the low-lying areas of Bangladesh. Journal of Bioscience and Agriculture Research, 01(01), 56-61.

 Hussain, M. and Salam, A. (2007). Basic Service Delivery Advocacy: Review Report, Development Wheel (DEW), Dhaka: Bangladesh.
- Kamal, A. S. M. M., Shamsudduha, M., Ahmed, B., Hassan, S. M. K., Islam, M. S., Kelman, I., & Fordham, M. (2018). Resilience to flash floods in wetland communities of northeastern Bangladesh. *International Journal of Disaster Risk Reduction*, 31(June), 478–488. Rogers, Everett. (2003): The Diffusion of Innovations. Fifth Edition. The Free Press, New York.