

## INSTITUTE OF AGRICULTURAL ENGINEERING Tropics and Subtropics Group

# Investigation of Air Flow Resistance for Maize Cobs Bulk Using an Automatic Test Rig

Janvier Ntwali, Ziba Barati, Joachim Müller

University of Hohenheim, Institute of Agricultural Engineering, Stuttgart (Germany)

#### Introduction

- Air flow resistance during drying is an imprortant contributing factor to energy consumption.
- Estimation of fan energy requirements involves knowledge of the air flow resistance of dried product.
- In this study, air flow resistance of maize cobs was assessed during drying of maize cobs to investigate the impact of cob shrinkage on the static pressure.
- The temperature and relative humidity varied between 30 to 40 °C and 20 to 40 %, respectively.
- The drying of maize cobs was slow as equilibrium moisture content was reached after 2 days.
  - 50 100 20

## **Material and Methods**

- The developed test ring had dimensions of 0.8  $\times$  0.6  $\times$  1.115 m with a holding volume of 0.53 m<sup>3</sup>.
- Three batches of 200 kg maize cobs of variety Amadeo were dried at a set temperature of 40 °C.
- Pressure was measured at 0.00 to 1.115 m of the bulk height and air velocity varying from 0.0 to 1.0 m s<sup>-1</sup>.
- Moisture content of maize was analysed using oven method.



Fig. 1. the automatic test ring.



Fig. 3. temperature and humidity (a) and drying curve (b), n=3.

- The measured statitc pressure was 329 Pa at the bottom of the bulk and 55 Pa at 1.115 m of the bulk height.
- Pressure dropped at the end of the drying to 275 Pa and 32 Pa at bottom of the bulk and 1.115 m, respectively.



### **Results**

- The maize bulk shrinked from 1.115 m to 0.9 m through out the drying process.
- Shrinkage of cobs resulted in desity reduction from 409.
   43 to 354.80 kg m<sup>-3</sup>.

**Table 1.** maize volume and bulk density during the drying experiments.

| Stage of drying | Volume (m <sup>3</sup> ) | Bulk density (kg m <sup>-3</sup> ) |
|-----------------|--------------------------|------------------------------------|
| Beginning       | 0.53                     | 409.43                             |
| End             | 0.48                     | 354.76                             |

Fig. 4. static pressure at the beginning (1) and end of drying (2), n= 3. Conclusions

• The static pressure of maize cobs bulk was relatively low.

Through flow air velocity, m s<sup>-1</sup>

- There was a significant drop in static pressure due to reduction in maize bulk as a result of cobs shrinkage.
- Although maize cobs dry slower compared to grains, it is possible to use a PV powered fan for maize cobs drying as a strategy to save energy.



Contact: E-mail: janvier.ntwali@uni-hohenheim.de Phone: +49 711 459-23119 Fax: +49 711 459-23298

