

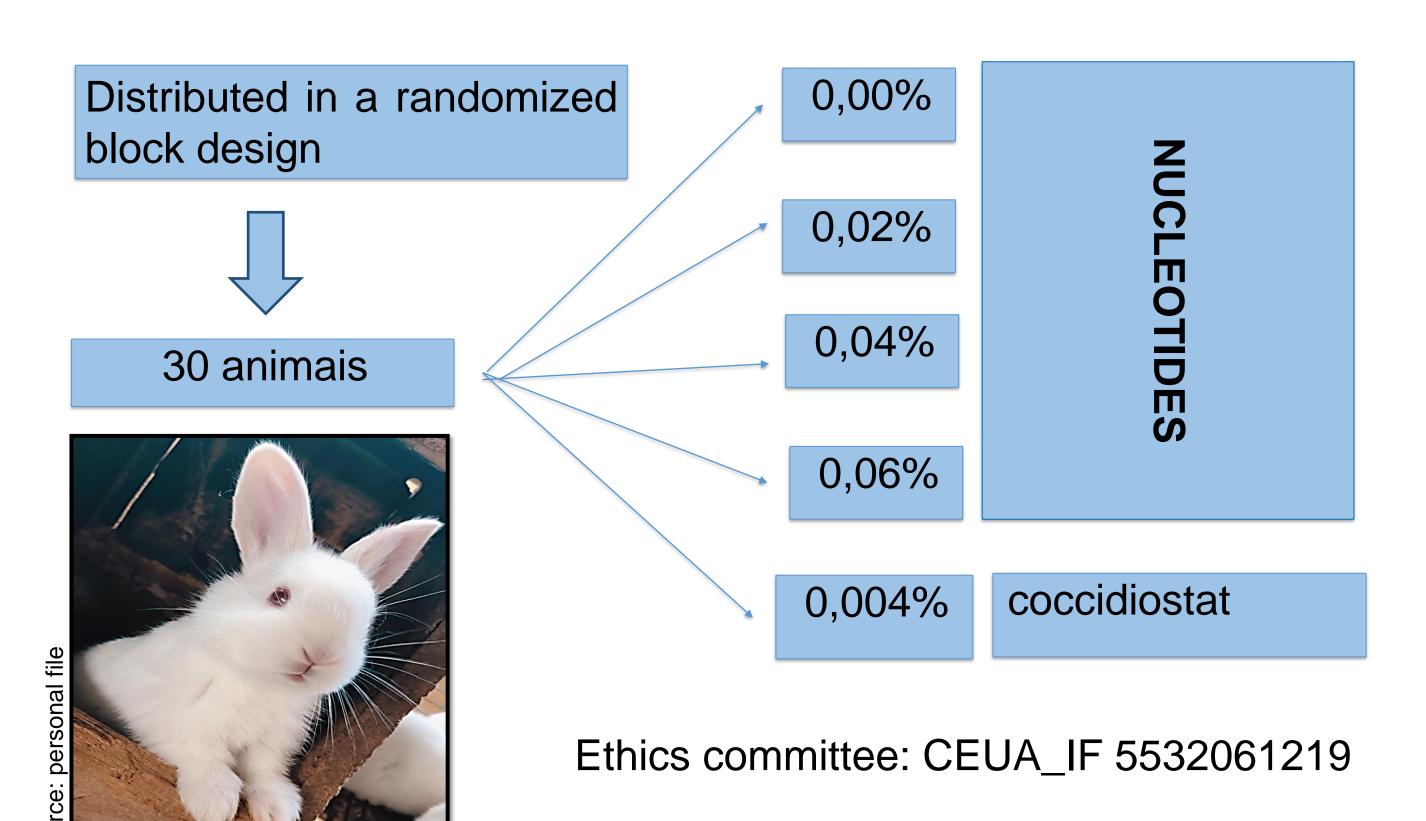
Tropentag 2021:Towards shifting paradigms in agriculture for a healthy and sustainable future – University of Hohenheim, Germany, September, 2021.

Effects of Nucleotides Supplementation on the Productive Performance of Rabbit

Guilherme Carvalho Rocha¹, Paola Cristina. Piza¹, Andressa Santana Natel², Ariane Flávia Nascimento¹, Lucas Alberto Teixeira de Rezende³, Eloi Portugal⁴

- ¹University José Do Rosário Vellano (UNIFENAS), Agronomy, Brazil
- ²University José do Rosário Vellano (UNIFENAS), Dept. of Agronomy, Brazil
- ³Federal Institute Sul de Minas Gerais, Veterinary Medicine, Brazil
- ⁴Federal Institute Sul de Minas, Veterinary Medicine, Brazil
- andressa.natel@unifenas.br

1 – INTRODUCTION


- Ban of in feed-antibiotics in animal production;
- Dietary nucleotides are one group of bioactive agents that may have the potential to alleviate animal performance problems;
- The objective of this study was to evaluate the effects of levels of nucleotides inclusion in diets to weaning rabbit on the productive performance.

2 – MATERIAL AND METHODS

 Local: Cuniculture Sector IFSULDEMINAS – Campus Muzambinho, Muzambinho, Br.

O Thirty New Zealand White weaning rabbit with 30 day old and 0.575 kg (P=0.32, SE = 0.117) were used, distributed in a randomized block design in four treatments according to the inclusion of nucleotides in the diet plus a witness with commercial coccidiostat.

- Additives were included in the feed before pelleting.
- The rabbits were housed in individual cages and fed ad libitum during the 60-day experiment

3 - RESULTS

 Table 1. Effect of Nucleotides (N) supplementation and contrast with commercial coccidiostat (C) on the productive performance of rabbit

ltem*	Nucleotides (% inclusion)				coccidi	P_Value	
	0.00	0.02	0.04	0.06	0.004	N	NxC
TFI, g	4.423	6.507	4.872	3.877	3.435	ns	ns
FW, kg	2.081	1.773	2.290	2.153	2.273	ns	ns
DWG,g.d ⁻¹	24.55	18.38	27.30	26.95	28.16	ns	ns
DFI, g.d ⁻¹	73.71	108.0	125.48	91,73	77,10	0.028**	ns
FC	3.04	6.06	4.87	3.87	3.43	ns	ns

- * TFI: total feed intake, FW: final weight, DWG: daily weight gain, DFI: daily feed intake, FC: food convention, ns: no significant
- A quadratic regression (P <0.05) was observed for daily feed intake (y =87.990+37.032x).
- There was no difference (P> 0.05) by contrast orthogonal between Coccidiostatic and Nucleotides supplementation treatments (0.02, 0.04 and 0.06) for analyzed variables

4 – CONCLUSIONS

 NU supplementation at 0.04 level resulted in a improvement in performance rabbits. Coccidiostatic can been replaced by Nucleotides, enabling the same results more safely.

5 - REFERENCE

O HOLEN, E.; JONSSON, R. 2006. Dietary nucleotides and intestinal cell lines: I Modulation of growth. Nutrition Research, v. 24, p. 197-207.

6 - ACKNOWLEDGEMENTS

