

Tropentag

2021

M. BIGOT, A. CAMP AIGNOLLE, V. CHARPENTIER, J. FREULARD A. MESSAGER & Daniel J E Kalnin^{1,2} ¹UR ADI-Suds: "Agro-Développement et Innovations aux Suds" ISTOM, Ecole supérieure d'agrodeveloppement international, 49100 Angers, ERANCE, d.kalnin@istom.fr

²MOLTECH, UFR Sciences, UA, Université d'Angers, 49100 Angers, France

Introduction: Various use of cocoa beans and cocoa butter

Different varieties of chocolate analyzed

TUMACO (T1)	HUILA (H)	SANTANDER	TUMACO (T2)	
85%	70%	(ST) 65%	65%	

Origin	Geographical and pedoclimatic characteristics
Tumaco	Municipality of southwestern Colombia, with a tropical climate subject to a strong maritime influence. The soil is mainly composed of alluvial deposits of marine and torrential origin
Santander	Municipality of southwestern Colombia, with a tropical climate subject to a strong maritime influence. The soil is mainly composed of alluvial deposits of marine and torrential origin

Tropical region composed of savannahs and forests with a small Huila oceanic influence. The soils are mostly sandy loam and clay

T emperature and precipitation per month

Cocoa bean composition and cocoa butter composition

The mean composition for chocolate from Colombia

	Colombia
16:0	30
18:1	29
10.0	26

Température moyenne annuelle (°C) — Précipitation moyenne annuelle (mm)

P3T1_85A.001 P3T1_85B.001 P3T1_85C.001

T_{off}(°C)

0.5

Monounsaturated TAG

Universal V4.5A TA Instruments

Polyunsaturated**∔** TAG

(°C)

0,3

Repetatibility for enthalpy and Ton

	Enthalpy (J/g)	T _{on} (°C)
T1P3	42,19	33,53
T1P3	37,64	32,81
T1P3	33,62	32,90

Conclusions

- Easy experiments allow distinctions especially in emerging countries
- Regional origin CB with *known* origin
- Differentiation is possible
- The regional temperatures are calculated for the whole plantation We did not take into acount \ll plot temperature \gg but considered rainfall and soil
- All CB samples are assumed to be mixtures from different *plots* and hence different **trees**
- CB is from *different hybrids*

Outlook

- We managed to recieve **CB from specific plots ongoing study**
- Cocoa pods from different trees but same hybrid and same plot so with the same temperature and rainfall as well as soil are investigated
- The composition of different CB from **different plots** but **same area** will be tested for physico-hemical behaviour and composition
- An estimate of impact for a given hybrid/tree on ambient temperature will be possible