

Institute of Tropical Agricultural Sciences (Hans-Ruthenberg Institute) / IFPRI Department of Social and Institutional Change in Agricultural Development (490C)

The gendered yield gap and women's empowerment

Evidence from smallholder farmers in Uganda's central region

Lukas Welk, Elizabeth Bryan, Edward Kato, Christine Bosch, Regina Birner

1. Introduction

- Despite a substantial increase in agricultural productivity in developing countries during the past decades, there is evidence of a significant gap between men's and women's agricultural productivity, estimated at roughly 25% (FAO 2011).
- There is little data on the determinants of this gap and how women's empowerment influences agricultural productivity and yields.
- → Aim: Identify which indicators of women's empowerment have a significant potential to narrowing the agricultural productivity gender gaps.

2. Methods

- Empirical analysis based on a recent intrahousehold survey conducted in Uganda which includes yield data.
- Women empowerment is measured using the Abbreviated Women's Empowerment in Agriculture Index (A-WEAI) developed by IFPRI.
- To measure the impact of women's empowerment and potential influencing variables on the yield gap a Kitagawa-Oaxaca-Blinder decomposition or an OLS will be conducted.

3. Preliminary results

- Previously, women's empowerment was determined by calculating the A-WEAI and a clear difference was found. Figure 1 shows the contribution to disempowerment of each indicator. Workload contributed the most.
- We tried different approaches to determine the gender gap, e.g. yield data per crop and plot in kg/ha and the examination of aggregated yield values (UGX/ha) (see Table 1).
- Men have significantly higher value per plot for all crops, women produce more coffee and banana on average.
- Further analysis will be done to determine the extent to which women's empowerment and other determinants contribute to the yield gap showed in Table 1.

Figure 1: A-WEAI indicator contributions to disempowerment

Table 1: Yield value by sex of the plot manager

Variable	iviale observations			remaie observations			Maan diff	Madian diff
	n	Mean	Median	n	Mean	Median	wean diff.	
Total yield value per ha	435	459884	173437	483	387134	226300	72750.1*	-52863.5
Total yield value per ha (annual crops only)	249	347560	135780	247	218090	134775	129470.7**	1005.8
Total yield value per ha (cash crops only)	139	749490	258999	198	630053	388499	119437.4	-129499.6
Total yield value per ha (only staple crops)	280	269056	135338	263	211818	131909	57237.6**	3429
Maize yield kg/ha	122	1733.3	1359.1	111	1880.9	1390.0	-147.6	-30.9
Banana yield kg/ha	71	7573.5	5930.5	81	11180.6	9884.2	-3607.0***	-3953.7
Coffee yield kg/ha	52	867.8	658.9	73	1288.7	1235.5	-420.9***	-576.6
Bean yield kg/ha	80	537.9	395.4	90	599.2	477.7	-61.4	-82.4

Variable	Male observations			Female observations			Moon diff	Madian diff
	n	Mean	Median	n	Mean	Median		
Total yield value per ha	435	459884	173437	483	387134	226300	72750.1*	-52863.5
Total yield value per ha (annual crops only)	249	347560	135780	247	218090	134775	129470.7**	1005.8
Total yield value per ha (cash crops only)	139	749490	258999	198	630053	388499	119437.4	-129499.6
Total yield value per ha (only staple crops)	280	269056	135338	263	211818	131909	57237.6**	3429
Maize yield kg/ha	122	1733.3	1359.1	111	1880.9	1390.0	-147.6	-30.9
Banana yield kg/ha	71	7573.5	5930.5	81	11180.6	9884.2	-3607.0***	-3953.7
Coffee yield kg/ha	52	867.8	658.9	73	1288.7	1235.5	-420.9***	-576.6
Bean yield kg/ha	80	537.9	395.4	90	599.2	477.7	-61.4	-82.4

****p*<0.01, ***p*<0.05, **p*<0.10

Source: FAO (2011): The state of food and agriculture. Women in agriculture: closing the gender gap for development. Rome: FAO.

Contact:

Lukas.welk@uni-Hohenheim.de