

Hohenheim,

Germany

Impact of Drought Stress on Growth Traits of Cauliflower and Broccoli

*Fatemeh Izadpanah^{1,2}, Navid Abbasi³, Forouzandeh Soltani³, Susanne Baldermann^{1,2,4} ¹Leibniz-Institute of Vegetable and Ornamental Crops, Großbeeren, Germany ²University of Potsdam, Institute of Nutritional Sciences, Food Chemistry, Germany ³University of Tehran, Department of Horticultural Science, Iran ⁴University of Bayreuth, Faculty of Life Sciences, Food Metabolome, Germany

Introduction

Global climate change affects rainfall patterns and causing plants to suffer from drought, especially in arid and semi-arid regions. Drought stress, as a limiting factor, considerably impacts plant growth and development, and thus these parameters can be used to select drought-stress tolerant plants. With the global production of 26.9 million tons (FAO 2019) cauliflower (*Brassica oleracea* L. var. *botrytis*) and broccoli (*Brassica oleracea* var. *italica*) are among the most important vegetables of the Brassicaceae family.

Objective

The main objective was investigate the cultivardependent drought stress tolerance of three different colored cauliflower cultivars and one broccoli cultivar.

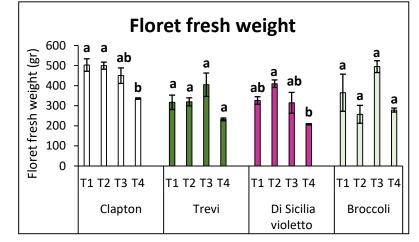
Methods

- Three different colored cauliflower cultivars were included: white; Clapton, green; Trevi and purple; Di Sicilia Violetto, and one broccoli cultivar 'Magic' (Fig. 1. d-g).
- Starting the drought stress: one week after transferring the transplants (40 days old, with 4-5 true leaves) in the greenhouse (University of Tehran, Iran), till the end of the experiment (a, b).
- Plants were subjected to different irrigation levels from 100 % irrigation (c):
 - T1: 85-100 % (control, no stress)
 - T2: 65-80 % (low drought stress)
 - T3: 45-60 % (moderate stress)
 - T4: 25-40 % (severe stress)
- At the end of the growth period, the whole plants were harvested, and different growth parameters such as floret fresh wight and size were determined.
- Data were analyzed per cultivar by IPM SPSS Statistics 26 (one-way ANOVA by Tukey HSD *post hoc* test).

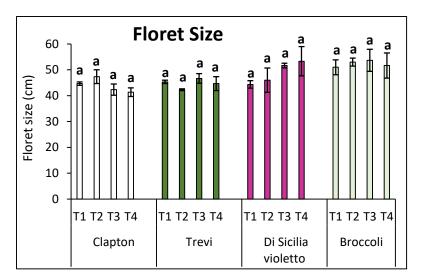
Acknowledgments

The project is financially supported by the Federal Office of Agriculture and Food (BLE) for of this project (2816 DOKI07/CarCauli).

Highlights


In conclusion, the research demonstrates that cauliflower and broccoli are droughtresistant vegetables.

Results


- In the control treatment (no drought stress), the floret fresh weight was higher in the white cultivar (~500 g) rather than in the colored cauliflower cultivars and broccoli (~300 g) (Fig. 2).
- The lowest FW was obtained by severe stress (25-40% irrigation) in the white and violet cauliflower cultivars; while no significant decrease was observed for the other cauliflower cultivar and the broccoli cultivar 'Magic' (Fig. 2).
- There is no significant difference between all the treatments for the floret size of all cultivars (Fig. 3).

Outlook

Further research should implement additional cultivars, field studies and quality traits, such as macro- and micronutrients.

Fig. 2. Different irrigation treatments: T1, control, 85-100 %; T2, 65-80 %; T3, 45-60 %; T4, 25-40 %. The values are shown as mean \pm SE, n = 3.

Fig. 3. Different irrigation treatments: T1, control, 85-100 %; T2, 65-80 %; T3, 45-60 %; T4, 25-40 %. The values are shown as mean ± SE, n = 3.

Fig. 1. University of Tehran (greenhouse a-c), Clapton (d): white; Trevi (e): green; Di Sicilia Violetto (f): Purple, and Broccoli 'Magic' (g)