A Marker- and Runs of Homozygosity-based Assessment of the **Inbreeding Status of South African Beef Cattle Populations**

S.F. Lashmar¹ & E. van Marle-Köster¹

¹ Department of Animal Sciences, University of Pretoria *Corresponding author: simon.lashmar@up.ac.za

Introduction

- Sanga cattle (Bos taurus africanus) in South Africa (SA): local genetic resources with unique adaptive traits
- NB for climate-smart, sustainable agriculture
- **Boran**: Popular choice for crossbreeding in sub-tropical regions of lacksquareSA (introduced to SA from Kenya and Uganda in late 1990's)
- Drakensberger: One of oldest breeds in SA (Breeders' Society

Results: Inbreeding coefficients

Table 1 Summary statistics of heterozygosity and inbreeding coefficients per breed

Breed	H _E	H _o	F _{IS}	F _{ROH}
BOR	0.294	0.296	-0.005	0.002
DRB	0.347	0.342	0.015	0.003

since 1947)

- Nguni: Several ecotypes uniquely adapted to different agroecological zones (Breeders' Society since 1986)
- **Tuli**: Hardy and adaptable (Breeders' Society since 1970)
- All four breeds are well established in **seed stock** and **commercial livestock sectors** (+ smallholder and communal systems)
- Access to national animal recording, genetic evaluation and markets
- Data driven breeding objectives: can lead to genetic erosion
- · May result in the failure of the population to adapt to new environmental challenges

Aim

To perform a genomic characterization and quantification of the inbreeding and runs of homozygosity (ROH) levels in four SA breeds.

Materials & Methods

NGI	0.319	0.311	0.026	0.002
TUL	0.331	0.332	-0.002	0.003

BOR= Boran, DRB= Drakensberger, NGI= Nguni, TUL= Tuli

Results: ROH descriptive statistics

• 2015 ROH segments identified in total (range: 3 235 for the Nguni to 4 723 for the SA Boran.

Fig 1 The number of ROH per breed within the defined length categories

Nguni

Drakensberger

Discussion and conclusion

- Moderate heterozygosity was indicated, and diversity losses $(H_{O} < H_{F})$ and gains $(H_{O} > H_{F})$ supported inbreeding coefficients (F_{IS}).
- The ROH profiles of the cattle populations in this study are indicative of more distant ancestral effects.
- Frequency of long ROH is currently low (ROH>16Mb range: 5.89% in BOR to 10.31% in TUL), however, caution should be taken when pipelines for genomic selection (GS) are implemented for these breeds.
- An increase in the frequency of long ROH (as a result of GS) have proven to enhance deleterious variation.
- The breeds are generally in a healthy genetic condition (in terms of inbreeding levels), even though they are subjected to directional selection.

Purcell et al. (2007). PLINK: a tool set for whole-genome association and • population-based linkage analyses. Am J Hum Genet. 81(3), 559-575.