

Evaluating the potential of equations to predict Organic matter digestibility from faecal Nitrogen(N) on rations with tropical feeds

Gajaga Krishnappa, A.K¹, Castro-Montoya, J.M², Dickhoefer, U³

^{1,2,3} Animal Nutrition and Rangeland Management in the Tropics and Subtropics (490i) Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim

1.Introduction

- > Organic matter digestibility (OMD) is primary to evaluate nutritive value of feed consumed,
- Estimating OMD in vivo requires abundant work
- \succ To facilitate this estimation, equations based on the N concentration in faces have been developed.
- > Three equations have been developed to predict OMD of ruminants with forage-based diets.

Potential of equations to predict OMD with tropical feeds is evaluated

4.Results

Fig.1,2,& 3 : Calculated OMD regressed with measured OMD

Table 1.Comparison of slope, intercept and R² for all the 12 comparisons.

	Slope	Intercept	R Square				
	Total 224 comparisons						
Eqn.1	0.38	345.9	0.13				
Eqn.2	0.23	470.6	0.13				
Eqn.3	0.51	284.1	0.12				
100% Grass forage							
Eqn.1	0.33	353.9	0.14				
Eqn.2	0.24	442.6	0.19				
Eqn.3	0.58	200.7	0.16				
50% Grass and 50% Legume forage							
Eqn.1	0.33	389.9	0.08				
Eqn.2	0.22	546.7	0.04				
Eqn.3	0.34	430.9	0.06				
100% Legume forage							
Eqn.1	0.52	313.8	0.23				
Eqn.2	0.21	505.7	0.13				
Eqn.3	0.40	412.8	0.09				

- > All the equations were developed under specific experimental conditions
- \succ The potential of these equations to accurately predict OMD under other settings might be low

3.Methods

2.Hypothesis

Three	equations	chosen	from	different	studies

Wang Eq	=0.899—0.644 exp(-0.5774*CP (g/kg OM)/100))
	(Wang et al., 2009)
Peripolli Eq	=0.7326-0.3598 exp(-0.9052* CP(g/kg
	OM))/100
	(Peripolli et al.,2011)
Lukas Eq	=79.76-107.7e(-0.01515*X)
	(Lukas et al., 2005)

- In total of 12 comparisons were conducted
- $R^2 < 0.23$, slope = 0.21-0.58 & intercepts = 200.7-546.7

5.Conclusion

- > Ability of all three equations to predict accurate OMD is very low.
- > OMD estimated compared with the in vivo OMD measured
- Total 224 in vivo measured OMD in the tropics with cattle, sheep, and goat
- Calculated OMD regressed on the measured OMD and the slope, intercept and R² estimated
- \succ Equations developed to predict OMD from faecal N cannot be applied in a variety of tropical feeding conditions.

6.Reference

1. Lukas, M. et al. (2005) 'Relationship between fecal crude protein concentration and diet organic matter digestibility in cattle', Journal of Animal Science, 83(6), pp. 1332–1344. doi: 10.2527/2005.8361332x.

2. Peripolli, V. et al. (2011) 'Fecal nitrogen to estimate intake and digestibility in grazing ruminants', Animal Feed Science and Technology. Elsevier B.V., 163(2–4), pp. 170–176. doi: 10.1016/j.anifeedsci.2010.11.008.

3. Wang, C. J. et al. (2009) 'Fecal crude protein content as an estimate for the digestibility of forage in grazing sheep', Animal Feed Science and Technology, 149(3-4), pp. 199-208. doi: 10.1016/j.anifeedsci.2008.06.005.

Acknowledgement:- Prabudhha overseas Scholarship, Dept. Of Social Welfare, Govt. of Karnataka, India.

Contact Details:- anil.gajagakrishnappa@uni-hohenheim.de