

A probabilistic framework for the cost-benefit evaluation of restoration outcomes in Northern Ethiopia

Yvonne Tamba^a, Joshua Wafula^a, Cory Whitney^{b,c}, Eike Luedeling^c, Negusse Yigzaw^d, Aklilu Negussie^d, Caroline Muchiri^a, Yemane Gebru^d, Keith Shepherd^a, Ermias Aynekulu^a

^a World Agroforestry (ICRAF), Kenya, ^b Center for Development Research (ZEF), University of Bonn, Germany, ^c University of Bonn, INRES – Horticultural Sciences, Germany, ^d WeForest, Ethiopia

Introduction

Decision-makers face two important types of decisions:

- Prioritizing decisions
- **Resource-allocation decisions**

Decision quality is affected constrained by complex, data-poor environments.¹

How can decision makers manage uncertainty and risk in their resource allocation decisions?

Methods

- The goals of our study were to:
- Predict restoration outcomes
- Identify knowledge gaps and critical uncertainties
- Provide insights for adaptive management of FLR efforts

Model outputs

Principles of the SIE framework^{2,3}

- Account for uncertainties with probabilistic tools
- Use of subjective estimates as model inputs
- 'With' and 'Without' scenario modeling
- Risk analysis with Monte Carlo simulations

Measure 'intangibles'

Results

Stakeholder-identified benefits of restoration

- Communal revenue from sale of carbon credits
- Soil and water conservation
- Improved tree and vegetation cover

Stakeholder-identified risks of restoration

- Anthropogenic risks
- Carbon market risks
- Natural risks \bullet

Conceptual model of the interventions' impact pathways highlighting the benefits and risks variables of FLR which were identified in consultation with local stakeholders.

Projected returns (Net Present Value; NPV) from grassland exclosure management, assisted natural regeneration and enrichment planting in a 25-year horizon showed a greater than 77% likelihood of success for all 3 cases.

Implication: We found a high likelihood of success in reversing degradation in the long-term. However, we also projected net losses in the short-term due to high initial costs of mobilizing communities, strengthening social governance structures and capacity building.²

FLR actors need significant upfront financial support to see their interventions through to the medium and long term.

References	Acknowladgmanter W/a coknowladge funding from the	RESEARCH LED BY:
 Luedeling, E., Shepherd, K., 2016. Solutions 7, 46–54. Tamba, Y. et al., 2021. Forest Pol. and Econ. 125, 102403. Do, H., Luedeling, E. & Whitney, C., 2020. Agro. for Sust. Dev. 40. Wafula, J. et al., 2018. Front. in App. Math. and Stat. 4. 	CGIAR research program on Water, Land and Ecosystems.	CGIAR Water, Land and Ecosystems