

INSTITUTE OF AGRICULTURAL ENGINEERING **Tropics and Subtropics Group**

Rapid detection of fumonisin B1 in maize kernels (Zea mays) using a semi-portable near-infrared spectrometer

C. Acuña-Gutiérrez, S. Schock, V.M. Jiménez, J. Müller

Introduction

- Fumonisin B_1 (FB₁) is a mycotoxin that represents a threat to the health of humans and livestock.
- Traditional detection analysis can be expensive and time consuming. There is a need to develop easier and cheaper detection technologies.
- The aim is to evaluate the feasibility of a rapid detection method using a semi-portable near-infrared spectrometer (NIRS) to detect FB_1 on contaminated maize kernels.

Material and Methods

For contamination, individual maize kernels were submerged in 500 μ I FB₁ solutions at different concentrations (0, 1, 5, and 10 mg kg⁻¹)

Results

PCA showed a good separation between the different concentrations used in both milled and whole kernels.

Fig 3. Principal component analysis (PCA) of contaminated maize with four different FB₁ concentrations. Milled sample (left) and whole samples (right).

- **Fig 1.** Wells from a cell culture plate used for individual kernel contamination.
- Samples were analyzed milled and whole using a semiportable NIRS (Ocean Optics) in the wavelength range of 900-2,500 nm.

The PLSR model allowed the fitting of a better prediction model for lacksquarethe milled samples than for the whole kernels.

Fig 4. Partial least square regression (PLSR) of contaminated maize with four different FB₁ concentrations. Milled sample (left) and whole samples (right).

Fig 2. Semi-portable NIRS steup used for the sample analysis.

An enzyme-linked immunosorbent assay (ELISA) was used as a reference method for the detection of total fumonisins.

Conclusions

- Initial results showed that the use of a semi-portable NIRS is promising for the detection of FB_1 on maize.
- Milling the sample gave a better prediction model.
- The developed method can help to carry out rapid analysis to ensure mycotoxin monitoring along the production chain.

Contact:

