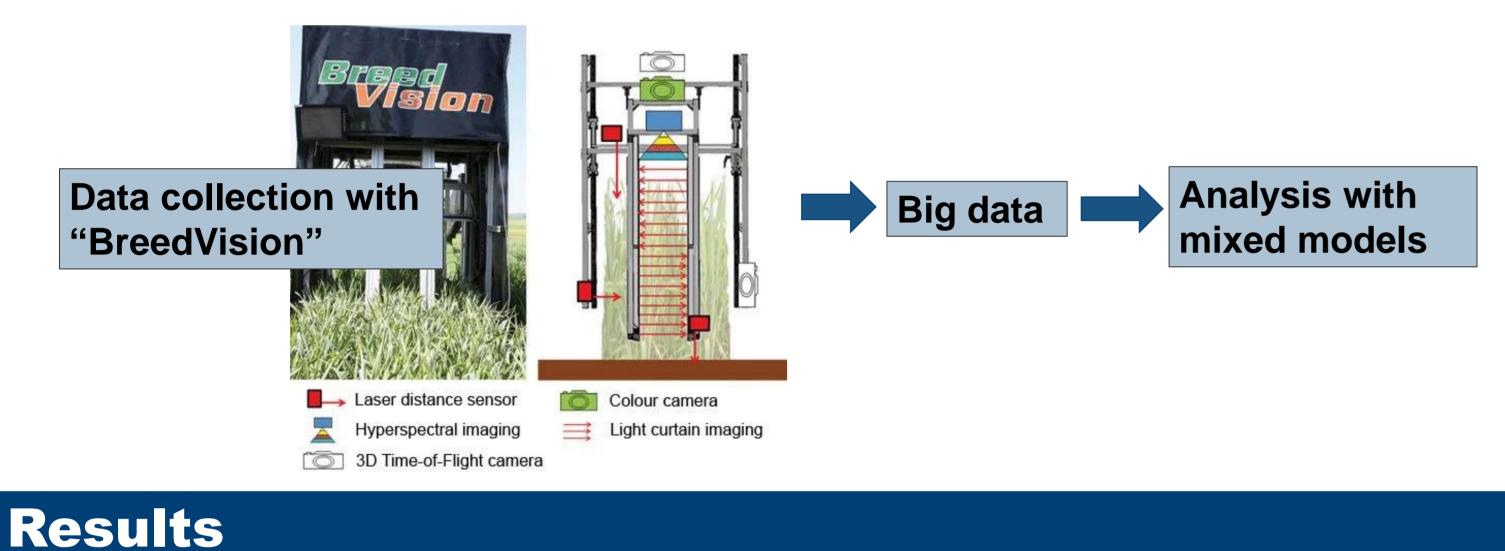


Statistical analysis of data from the field phenotyping platform "BreedVision"

Md Anisur Rahaman¹, Hans Peter Maurer ¹, and Hans-Peter Piepho²

¹University of Hohenheim | State Plant Breeding Institute (720) | Fruwirthstraße 21 | 70599 Stuttgart | Germany ²University of Hohenheim | Institute of Crop Science | Fruwirthstraße 23 | 70599 Stuttgart | Germany


Introduction

Phenotyping platform like "Breedvision" is a very useful tool in plant breeding for measuring complex traits (e.g., abiotic

Methods

Univariate model for Dry matter yield (DMY) and Canopy temperature(CT)

- stress, growth dynamics).
- This phenotyping platform making big and complex data sets readily available for analysis.
- Secondary trait must have high heritable correlation with target trait. Adding covariates can reduce error, thus increase prediction accuracy of the model.
- Research goal is to i) compare prediction accuracies of univariate and bivariate models. ii) evaluate the effect of adding covariates to the model.

1. $DMY_{ijhnt} = \mu_{nt} + \gamma_j + b_{jht} + \tau_{in} + \varepsilon_{ijhnt}$

Here, DMY_{ijhnt} = response of *i*-th genotype in *h*-th block nested within *j*-th replicate, n, t = subscripts added for nitrogen level and trial areas, respectively and ε_{ijh} = residual plot error associated with DMY_{ijh} , $\varepsilon_{ijh} \sim N(0, \sigma_e^2)$. 2. $CT_{ijkhnt} = \mu_{nt} + \gamma_{jt} + b_{jht} + \tau_{in} + \varepsilon_{ijkhnt}$ Here, CT_{ijkhnt} = response of *i*-th genotype in *h*-th block

nested within *j*-th replicate with *k*-th measuring replicate and

 ε_{ijkhnt} = residual plot error of CT_{ijkhnt} . Errors from the same

plot piled into a vector ε_{ijkhnt} and $\varepsilon_{ijkhnt} \sim N(0, \mathbf{R})$.

Adding covariates to the model

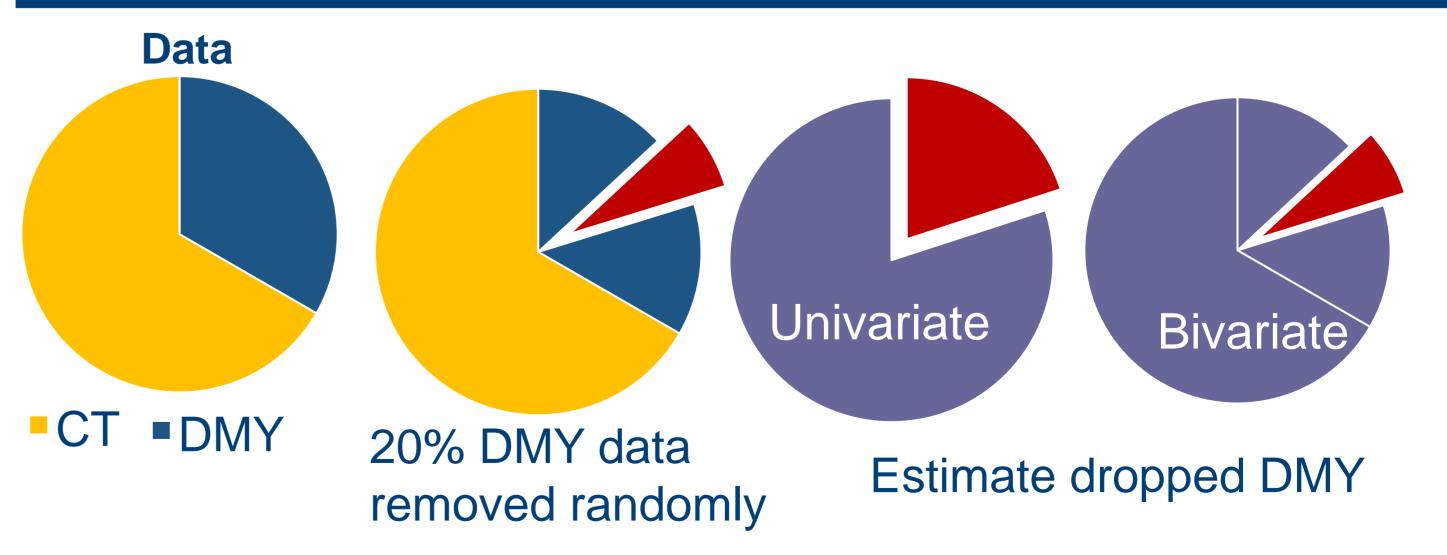
3. $CT_{ijkhnt} = \mu_{nt} + \gamma_{jt} + b_{jht} + \tau_{in} + \beta_1 x_{1ijkhnt} + \beta_2 x_{2ijkhnt} + \varepsilon_{ijkhnt}$

Table 1: Comparison between the model without covariates (Eq. 2) and model with covariates (Eq. 3)

Model	AIC	BIC
Eq. 2	1194.5	1368.5
Eq. 3	749.2	926.5

Table 2: Mean correlation and mean RMSE between observed and predicted DMY from univariate (Eq. 1) and bivariate (Eq. 4) analysis, 95% confidence limits (CLs) of means in parenthesis.

Summary statistics	Univariate (Eq. 2)	Bivariate (Eq. 4)
Mean Pearson's	0.8599	0.8537
correlation	[0.8590-0.8607]	[0.8528-0.8546]
Mean RMSE	0.7949	0.8103
	[0.7929-0.7968]	[0.8092-0.8115]


- Model with covariates shows lower AIC and BIC scores (Table 1). So, model with covariates performs better.
- Univariate model shows lower mean correlation and RMSE (0.8599 and 0.7949 respectively). Hence, univariate model

Here, $(x_{1ijkhnt} = \text{ambient temperature corresponding to} CT_{ijkhnt}$ and $x_{2ijkhnt} = \text{radiation intensity corresponding to} CT_{ijkhnt}$, β_1 and β_2 are corresponding slopes for ambient temperature and radiation intensity). **Final model**

4. $Y_{ijkhntb} = \mu_{ntb} + \gamma_{jtb} + b_{jhtb} + \tau_{inb} + \beta_1 x_{1ijkhntb} \cdot switch + \beta_2 x_{2ijkhntb} \cdot switch + \varepsilon_{ijkhntb}$

Here, switch= 0 to off covariates in DMY; switch= 1 to include covariates in CT b= (DMY, CT).

Model evaluation

has better prediction accuracy (Table 2).

Conclusions

- Addition of covariates showed better prediction accuracies.
- We recommend to include these two covariates (radiation intensity and ambient temperature) in the final model.
- There was no gain from the bivariate model in 10000 simulations.
- However, the bivariate model with CT can be utilized as a index for indirect selection in adverse situations such as bad weather condition or limited seed supply.
- Calculation of Correlation and root mean squared error (RMSE) for 100 and 10000 simulations cross validation for DMY
- Calculation of Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for evaluation of covariates.