

Stakeholder-oriented Canvas business model: A tool for sustainable adoption of new technologies Amoussohoui R.^{1*}, Arouna A.², Bavorova M.³, Haritini T.⁴, Banout J.¹

¹Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Science Prague, Kamycka 129, 165 00 Prague, Czechia ²Africa Rice Center (AfricaRice), 01 BP 2551 Bouake 01, Bouake, Cote d'Ivoire ³Department of Economics and Development, Faculty of Tropical AgriSciences, Czech University of Life Science Prague, Kamycka 129, 165 00, Praha-Suchdol, Czechia ⁴School of Business, University of Nicosia, 46 Makedonitissas Ave, 1700 Nicosia, Cyprus

Introduction & Goals

- Adoption and dissemination of new agricultural technologies is associated with two main issues: (i) suitable means for demonstration, and (ii) factors associated with adoption
- Study focuses on digitalized decision tool providing personalized advice to rice producer, and modern threshing machine to increase rice farmer efficiency
- Study tests oriented business model approach as a pathway for the sustainable adoption of new technology
- Questions to be answered: (Q1) What is willingness to pay among farmers? (Q2) What business model can be used for adoption? (Q3)

Results and discussion

 Rice farmers are willing to pay between \$3 and \$5 per quarter acre to receive personalized advice, similarly to [3]

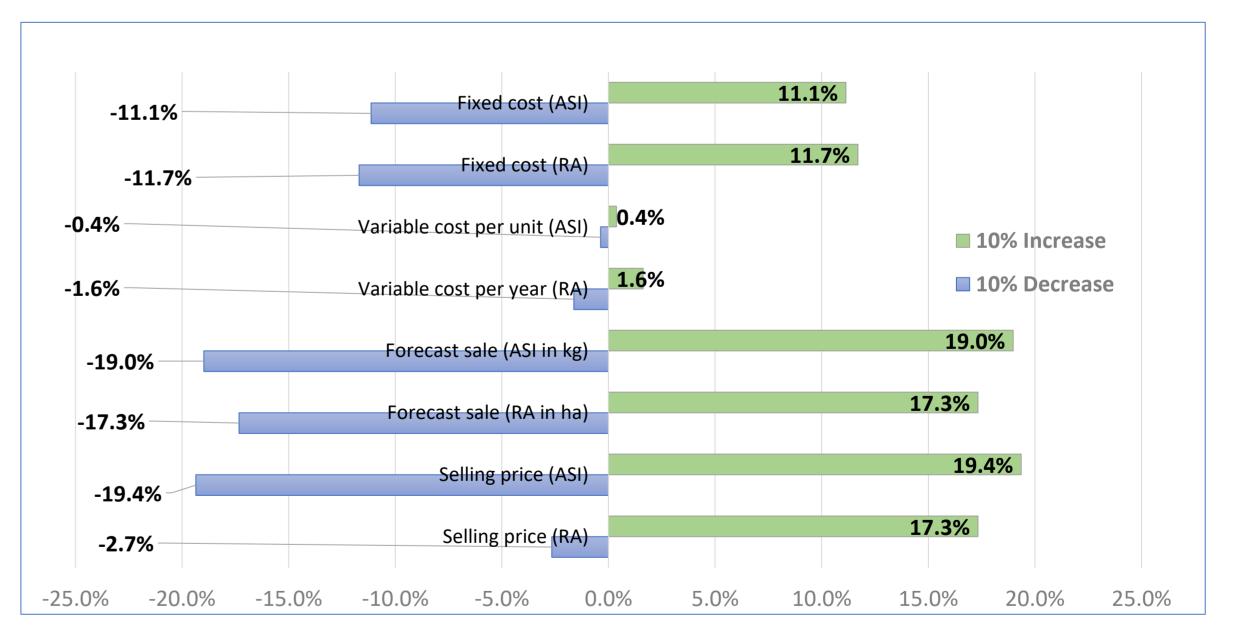
Goal: Sustainable adoption of new technologies	Business environment analysis : PESTEL Analysis	Original Business Canvas	One at a time Sensitivity approach to identify BM weaknesses	Based on the weaknesses identified	Ex-ante Business Model Evaluation	Experimental Evaluation of the Business Model
	Business competitivenes s analysis: Porter's Five Forces	Profitability analysis: NPV, IRR				
		Step 1	Step 2	Further steps		
	Upstream Analysis	Downstream Analysis		Downstream Analysis		

What are the weaknesses of proposed business model?

Figure 1. RiceAdvice interface and Output page Source: AfricaRice (2021)

Methodology

- Quantitative data were collected by AfricaRice through Randomized Control Trial
- Delphi method was used to collect qualitative data from five experts in each technology, i.e. RiceAdvice and the threshing machine
- Data were analysed in 3 steps:
- . Willingness to pay analysis (Q1): t-test analysis to compare the mean for the three different groups/treatments (A, B, and C)
- Business model formulation and cost-benefit analysis (Q2):
 Business Model Canvas (BMC) [1]


Figure 2. Proposed pathway of the Stakeholder - oriented business model

 All technologies can be chosen because they are independent of each other since both are positive and will then generate wealth for the shareholder

Table 1. Cost-benefit analysis of various business models

	Thresher	RiceAdvice	Thresher & RiceAdvice
Net Present Value	\$2,403.00	\$1,515.73	\$17,381.84
Internal Rate of Return	23%	28%	33%
Payback Period (years)	3.56	3.91	3.12
Profitability Index (PI)	\$1.29	\$1.59	\$1.67

- Sensitivity analysis results (figure 3) show:
- At 10% increase in the forecast amount of rice to be threshed will increase the net present value by 19% and otherwise decrease it.
- At 10% increase in the thresher price also increases the net present value by 19.4% and otherwise decreases it.
- The model is weakly sensitive to the variable costs per unit for both the RiceAdvice and ASI threshing technologies.

 iii. Business model simulation (Q3): "One-at-a-time" sensitivity approach [2] and run two scenarios at 10% marge. The simulation was done using a linear programming in MS Office Excel

Conclusion

- Q1: Rice farmer are willing to pay for the digitized extension service (\$12 to \$20/hectare);
- Q2: Business model is profitable and more when both technologies are combined, The business model pathway developed shows the steps for the sustainable adoption of new agricultural technologies;
- Q3: Price of service is an important factors of the business model, and need to be further analyzed;
- Further analysis following the pathway design in the figure 2.

References

- [1] Osterwalder A, Pigneur Y (2009) Business model generation. Joh Wiley & Sons, Inc.;
- [2] Hamby DM (1995) Health Phys 68(2):195;
- [3] Zossou, E., Saito, K., Assouma-Imorou, A., Ahouanton, K., Tarfa, B.D., 2020.
- Participatory diagnostic for scaling a decision support tool for rice crop management in northern Nigeria. Dev. Pract. 0, 1–16.

Figure 3. Sensitivity analysis

Acknowledgement

The authors acknowledge AfricaRice Center; CARI/Giz; the Rice actors (millers and extension agents); and the Faculty of Tropical AgriSciences.

