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Abstract 

 

The inclusion of secondary traits and environmental covariates in the prediction model became an 

important consideration in recent years. Our study was aimed at quantifying the impact of adding 

secondary traits and covariates in the improvement of the target trait. An experiment was 

conducted in 2018–19 at Hohenheim for sensor-based non-invasive prediction of yield (biomass 

and grain) in triticale (× Triticosecale Wittmack) field trials with four trial areas t_1, t_2, t_3 and 

t_4 and four nitrogen levels N_1= 40 %, N_- 2= 70 %, N_3= 100 %, and N_4= 130 % in each 

trial area. A trial area contains 25 triticale genotypes in an α-lattice design with ten incomplete 

blocks within two replicates and the data were recorded for dry matter yield (DMY) and a 

secondary trait canopy temperature (CT). CT was measured with a sensor machine using the field 

phenotyping platform “BreedVision” from the Senselgo project during the vegetation period by 

using hyperspectral cameras and the sensor machine ran twice in each plot for the data recording. 

Undoutedly, mixed models are effective in handling repeated measures on the same statistical 

units and are widely used in biological sciences. Therefore, considering repeated measure issues 

and measurement of two traits in parallel, a mixed linear bivariate model was developed to 

predict the target trait ‘DMY’ without measuring it in the field. Radiation intensity and ambient 

temperature are two covariates also considered in the model. The model with covariates showed 

reasonable improvement in prediction performance. There was no gain from the model with 

secondary trait CT (bivariate model), however, we recommend using this model where it is 

difficult to measure the target trait DMY due to extreme weather conditions and limited seed 

supply. Thus, our model allows early selections to be made and saving considerable resources in 

breeding experiments. 
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Introduction 

Sensor-based phenotyping accelerates the breeding experiments in environmentally controlled 

greenhouse conditions and in field conditions. Measurement of a secondary trait such as canopy 

temperature in pedigree selection is a major achievement of sensor-based phenotyping platforms 

(Rutkoski et al., 2016). State Plant Breeding Institute, Universität Hohenheim, in collaboration 

with the Competence Centre of Applied Agricultural Engineering (COALA), University of 

Applied Sciences Osnabrück have developed the phenotyping platform “BreedVision” to 

accelerate and to improve the phenotyping of plants under field conditions. Phenotyping 

experiments have a complex experimental design with random effects and fixed effects to be 

included in the model. To analyze vast amount of data coming from field phenotyping platform, 

linear mixed modeling (LMM) is used due to its flexibility to handle unbalanced data and 

complex experimental designs (Piepho and Möhring, 2011). Besides, LMM can include both 

fixed and random effects during model development which makes mixed modeling a most 

promising statistical tool to analyze complex phenomics data. Previous experiments at the 

International Wheat and Maize Improvement Center (CIMMYT) found a high correlation 

between canopy temperature (CT) and Dry matter yield (DMY) (Rutkoski et al., 2016; Sun et al., 

2019). These findings motivated us to include this trait in our model to get a better prediction. 

However, ambient temperature and radiation intensity are two continuous variables that can cause 

significant variation in the recorded data for canopy temperature. Adding such continuous 

variables that are commonly called covariates, can help to reduce error and improve the 

prediction accuracy in a model (Fisher (1937/1947; as cited in Bloom et al., 2007). Our study will 

aim at finding a suitable univariate model in the first step to analyze sensor-based data from 

“BreedVision” platforms studying trait DMY and CT separately. Two environmental covariates-

radiation intensity and ambient temperature be included only in trait CT for the analysis. Finally, 

we will derive univariate and bivariate prediction models to i) evaluate the effect of adding 

covariates into the model and ii) compare the prediction accuracy of univariate and bivariate 

analysis. An applicable prediction model developed from this study may be useful to predict the 

target trait ‘DMY’ without measuring it in the field, thus allowing an early selection to be made 

and saving considerable resources in phenotyping experiments. 

 

Methods 

The experiment was conducted in 2018-19 at Hohenheim with four trial areas with four nitrogen 

levels N_1= 40%, N_2= 70%, N_3= 100%, and N_4= 130%. Here one nitrogen level was applied 

in a trial area (e.g., N_1 was only applied in t_1). In a trial area, 25 genotypes were planted in an 

α-lattice design with ten incomplete blocks within two replicates; in a replicate, 25 genotypes 

were allocated in five blocks. In all plots, data were recorded for two traits namely, dry matter 

yield (DMY) and canopy temperature (CT). Additionally, to add more precision to the analysis, 

two covariates were also recorded as radiation intensity and ambient temperature during trait CT 

measurements. CT was measured by the sensor machine and the sensor machine ran twice in each 

plot for data recording. We have 600 observations for the complete dataset, where 200 

observations originate from DMY and 400 observations from CT and following models were 

developed from the recorded data. 

We start the analysis with deriving the following univariate model for DMY data- 

 ,                               (1) 

Here,  is response of i-th genotype in h-th block nested within j-th replicate, µ is the 

intercept,  is the effect of j-th complete replicate, n,t = subscript for nitrogen levels and trial 

areas respectively and = residual plot error associated with ,  ~ N (0, ). 

Similarly, a univariate model for CT can be derived in the following equation- 

 ,                                                                     (2) 



here is the residual error associated with , error terms can be stacked into a vector 

 and error vector  assumed to be normally distributed with ~ N (0,R) and R 

could be defined as follows: 

   .                                                                                                (3) 

The experiment has four trial areas, so, CT has 400 observations. In this case, data was sorted by 

four nitrogen levels or trial areas, blocks within the trial areas, plots within blocks and measuring 

replicates within the plots. Here, each measuring replicate has 200 observations. To include all 

four trial areas into the model, it is reasonable to consider a Kronecker product of identity matrix 

 with the variance-covariance matrix derived in the model developed for single nitrogen level. 

Matrix for random effects or G matrix could also be derived as follows: 

 G                                                                                        (4) 

To get the G matrix for all four trial areas, also a Kronecker product of identity matrix  was 

considered with the G matrix for the model for single nitrogen level. 

In this experiment, ambient temperature and radiation intensity were recorded as covariates. With 

the covariates, the model (Eq. 2) extends to: 

,                                   (5) 

here  is the change in CT (slope) due to a unit change in ambient temperature ( ),  is 

the change in CT (slope) due to a unit change in radiation intensity ( ),  is the 

ambient temperature corresponding to  and  is the radiation intensity 

corresponding to  and all other variables are defined as similar as defined in (Eq. 2).  

Data were measured for two traits and these two traits will be analyzed in a model 

simultaneously. To analyze these two traits, DMY and CT, together, it is required to derive a 

bivariate model. To extend the model to a bivariate case, it is necessary to add another subscript b 

(= DMY, CT) for traits to the model 

     (6) 

where switch=0 to switch off covariates in the trait (DMY) and switch=1 to include covariates in 

the trait CT. The variable switch is defined as a quantitative factor. In SAS, it is necessary to 

remove switch from class factors (Piepho et al., 2006). Here  is the residual error 

associated with  and plot effect is confounded with the error structure. 

For checking models’ performance in practice, Cross-validation (CV) was used for resampling 

data to assess the true prediction error of prediction models. We left out 20% of the data points 

randomly from trait DMY in univariate and bivariate models. Then, we used the remaining 

univariate DMY data or all remaining bivariate data to predict the data dropped. Subsequently, 

we calculated the correlation and root mean squared error (RMSE) between the observed and 

predicted values for the dropped DMY data. The process was repeated 100 and 10000 times using 

a macro, consequently, the mean correlation and RMSE between observed and predicted DMY 

values along with their confidence interval was calculated from 100 and 10000 runs then was 

compared for univariate and bivariate analysis. 

 

Results and Discussion 

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) was used to 

compare between model without covariates (Eq. 2) and model with covariates (Eq. 5). Table 1 

represents the results of this comparative analysis. 

 



Table 1: Comparison between the model without covariates (Eq. 2) and model with covariates 

(Eq. 5) 
Model  -2 ⋅ log LR

† AIC‡ BIC* 

Eq. 2 988.5 1194.5 1368.5 

Eq. 5 539.2 749.2 926.5 

        †Log-likelihood estimate ‡Akaike information criterion *Bayesian information criterion  
 

The model without covariates (Eq. 2) has the AIC value of 1194.5 and the BIC value of 1368.5. 

On the other hand, the model with the covariates (Eq. 5) has an AIC value of 749.2 and the BIC 

value of 926.5. As smaller AIC and BIC values were observed for the model with covariates, this 

model can be selected, and this finding will also be used during the bivariate analysis. Rutkoski et 

al. (2016) reported similar results in case of days to heading as a covariate can improve prediction 

accuracies in univariate and bivariate models for wheat.  

To evaluate prediction accuracies of the model, mean correlation and RMSE of observed and 

predicted values of DMY from 100 simulations cross-validation were presented in Table 2 to 

compare the results of univariate (Eq. 1) and bivariate (Eq.6) analysis in 100 simulations.  

 

Table 2: 100 simulations results; calculation of mean correlation and RMSE between observed 

and predicted values from univariate (Eq.1) and bivariate (Eq. 6) analysis, values for the 95% 

confidence limits (CLs) of the means are in parenthesis.   
Summary statistics  Univariate (Eq. 1) Bivariate (Eq. 6) 

Mean Pearson’s Correlation  0.8015 

[0.7785-0.8245] 

0.8156 

[0.7924-0.8387] 

Mean RMSE** 0.8598 

[0.8501-0.8695] 

0.8535 

[0.8501-0.8695] 

    **Root mean square error 

 

For both univariate (0.8015) and bivariate (0.8156) analyses, a strong correlation between 

computed and predicted value was estimated with confidence limits (CLs) of [0.7785-0.8245] and 

[0.7924-0.8387], respectively, at the 95% level. The mean RMSE for univariate analysis was 

0.8598 and 0.8535 for the bivariate analysis with a CLs of [0.8501-0.8695] and [0.8501-0.8695] 

respectively at the 95% level. To get more precise results we also calculated results from 10,000 

simulations. For 10000 cross-validation simulations, the mean correlation and RMSE between the 

observed and predicted values were presented in Table 3. A strong correlation between computed 

and predicted value was estimated for both univariate (0.8599) and bivariate (0.8537) analyses, 

with CLs of  [0.8590-0.8607] and [0.8528-0.8546], respectively at the 95% level. 

 Table 3: 10000 simulations results; calculation of mean correlation and RMSE between 

observed and predicted values from univariate (Eq.1) and bivariate (Eq. 6) analysis, values for the 

95% confidence limits (CLs) of the means are in parenthesis. 
Summary statistics Univariate (Eq. 1) Bivariate (Eq. 6) 

Mean Pearson’s correlation  0.8599 

[0.8590-0.8607] 

0.8537 

 [0.8528-0.8546] 

Mean RMSE** 0.7949 

[0.7929-0.7968] 

0.8103 

[0.8092-0.8115] 

      **Root mean squared error 

The mean RMSE for univariate analysis was 0.7949 and 0.8103 for the bivariate analysis with a 

CLs of [0.7929-0.7968] and [0.8092-0.8115] respectively at the 95% level. Here, the univariate 



model has a higher correlation and lower RMSE than the bivariate model which suggests that 

there is no gain from the bivariate model for prediction accuracy.  

Our results showed that we have no gain from the bivariate analysis. Sun et al. (2017, 2019) 

reported contrasting findings in their works with wheat data at CIMMYT where they concluded 

that inclusion of CT can increase prediction accuracy up to 146% when secondary traits were 

used in both training and test populations. We used cross-validation by putting the secondary trait 

only in the training population. Our findings are supported by Rutkoski et al. (2016), as they have 

drawn a similar conclusion when secondary data were only used in the training population. 

 

Conclusions and Outlook 

Based on our results, we can conclude that there is no gain from analysis with secondary trait CT, 

if we add CT only in the training population. However, CT can be still useful to predict DMY in 

adverse conditions, when it is impossible to determine the primary trait DMY directly. Besides, 

CT can be used as an index for early selection of DMY in genomic selection cycles by predicting 

DMY at early growth stages, which will save a massive number of resources and time in breeding 

experiments. We also demonstrated that the model with covariates (radiation intensity and 

ambient temperature) has better performances, this indicates that the inclusion of these two 

covariates can improve the model performance substantially. From our results and previous 

literature, we found some loose ends in this research which opens new routes for future 

researchers. Among them, testing secondary traits across the environment and determining the 

best growth phase for measuring phenotyping data by sensor-based experiments are important to 

consider. Also, estimation of heritability to calculate percent prediction accuracy will be helpful 

to get more information on prediction performance of a model. 
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