

Bamboo for Landscape Restoration

Bhoke Masisi¹, Astrid Zabel², Jürgen Blaser³

¹Bern University of Applied Sciences (BFH), School of Agriculture, Forest, and Food Science, Switzerland ²Centre for Development and Environment, University of Bern ³Bern University of Applied Sciences (BFH), School of Agriculture, Forest, and Food Science

Introduction

African countries are striving to restore over 100 Million hectares of land by 2030.

- Under this attempt, Nature-based Solutions (NbS) to the benefit of the rural poor societies are much sought after.
- However, in climate policy debates, Bamboo has been neglected as a NbS for landscape restoration following its exceptionality among trees, mostly viewed as a non-ecologically valuable crop.

To break this conceptual barrier, we investigated on bamboo's potential to sequester Carbon in agroecosystems, while presenting variation in Carbon content; (i) Along altitudinal gradient; (ii) Between indigenous and exotic species and; (iii) Between intensive and extensively managed bamboo ecosystems.

Methodology

Figure 1: Location of the study sites

Results

Table1: Above ground Biomass Carbon stock and sequestration rate of bamboo across diameter classes

Diameter class (Dbh cm)	Biomass (t ha ⁻¹)	Biomass Carbon (t C ha ⁻¹)	Biomass C sequestration rate (t C ha ⁻¹ year ⁻¹)	Culm density (Culms ha ⁻¹)
Dbh ≤ 4	19.4	9.7	7.5	9122.8
Dbh > 4≤ 8	56.4	28.2	20.4	5064.6
Dbh > 8	91.0	45.5	29.4	10824.4
TOTAL	55.6	27.8	19.1	8337.3

Variation in Carbon content

across elevation gradients

Sampling design:

- 60 Sampling plots established,
- 12 distinctive observational units studied.
- 60 bamboo culms harvested and further determine their fresh and dry masses.

Statistical analysis:

ANOVA with post-hoc Tukey's HSD test

m= 21.9 Intensive Ecosystem management option

Figure 3: Variation in bamboo carbon content between intensively and extensively managed ecosystems

Figure 2, 3 and 4 present ANOVA with post-hoc Tukey's HSD comparison test results.

- From each plot, Observations with the same letters are not significantly different.
- Where, m = Mean, P is P-value

(Significance level, p = 0.05)

Conclusions

- > Bamboo can sequester a significant amount of carbon, with altitude, Species and ecosystem management options being significant sources of variation in carbon stored.
- > Considering its potential for climate change resilience and landscape restoration, perceptual biases against bamboo should be eliminated.
- > These findings unveils an important step towards unlocking future climate finances from bamboo-based ecosystems in Africa.
- > However, following its rapid expansion, bamboo ecosystems must be managed sustainably to avoid a shift to monoculture.

Tropentag 2020 Food and nutrition and its resilience to global crises September 9-11, 2020, Organised by ATSAF e.V., Germany