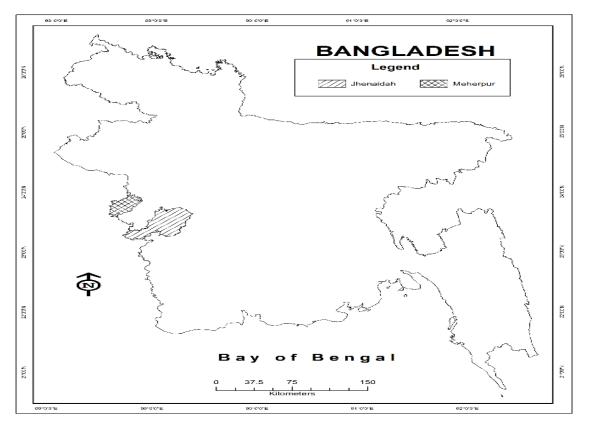
Alternative feeding options to enhance dairy farm sustainability in Bangladesh

Md Shahin Alam^{1,4}, Timothy J. Krupnik², Shanjida Sharmin³, Jeroen C.J. Groot⁴

¹Hajee Mohammad Danesh Science and Technology University, Dairy and Poultry Science, Bangladesh
 ²International Maize and Wheat Improvement Center (CIMMYT), Sustainable Intensification Program, Bangladesh
 ³Bangladesh Agricultural University, Agricultural Economics and Rural Sociology, Bangladesh
 ⁴Wageningen University and Research, Farming Systems Ecology - Plant Sciences, The Netherlands

Shahin, ID_64


1. Introduction

Dairying in Bangladesh

- ✓ Farmers : 1.2 million, Dairy cows: 6.14 million
- ✓ Milk shortage: 55 -60%, Feed shortage: 45%

2. Materials and methods

- ✓ Study areas: Bangladesh (Jhenaidha, Meherpur)
- ✓ Focus group discussion, Farm survey
- ✓ Farm size & number: Small(2), Medium(2), Large

- ✓ Imported concentrate: 80%
- ✓ Main roughages- Rice straw, Local grass and Napier
- ✓ Cropping pattern: Paddy rainfed-paddy irrigated/cash crops

Research question: What were the alternative feeding strategies to enhance dairy farm sustainability in Bangladesh?

- Research tools: FEAST & FarmDESIGN
- FarmDESIGN (Objectives): Operating profit (\$/ha)
 OM balance(kg/ha), Self-reliance(%)
 Feed costs(\$/kgDM), Soil N losses(kg/ha)
- ✓ Decision variables

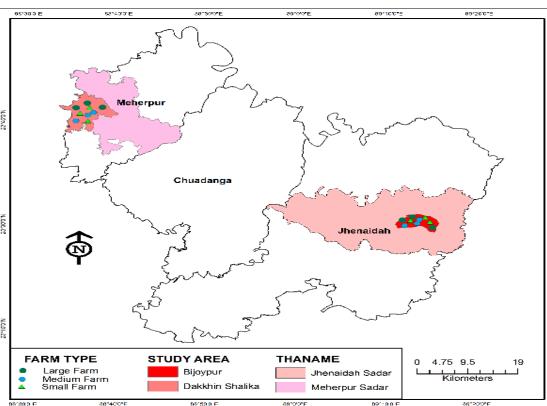


Figure 2: Map of Jhenaidha and Meherpur districts

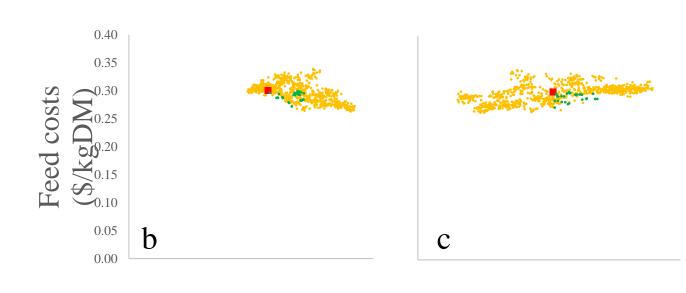
3. Results

 $O_{1000}^{0000} \\ O_{1000}^{0000} \\ O_{1000}^{$

equal by 350 300

Table 1: Original and optimized farm performance (potential change in %) over a year by using Pareto optimum solutions

Variables/ Potential change (%)	Operatin) g profit	Feed cost	OM balance	Soil N losses	Self reliance
J-large	14	-3	286	-17	18
J-medium	12	-16	37	-4	25
J-small	10	-6	17	-10	16
M-large	37	-10	4	-8	8
M-medium	209	-15	13	-16	21
M-small	22	-7	4	-22	7


4. Discussion

Economic aspects

- Decreased-feed costs, Increased- feed production
- ✓ Replaced- Irrigated paddy-Fodder crops, More crops
- ► Fodder cultivation increased 15% (Roy et al., 2012)
- ➢ Rice surplus- 2 million ton (Kabir et. al., 2015)
- ➤ Milk shortage- 7 million ton (DLS, 2016)

Trade-offs

Higher Self reliance with lower OP and OM balance (**Fig: 3a and 3d**) Higher OP and OM balance with higher soil N losses (**Fig: 3h and 3j**)

<u>Synergies</u> Increased self-reliance with lower FC & soil N losses, & higher OM balance (**Fig: 3b, 3g and 3d**) Higher OP & higher OM balance (**Fig: 3e**)

Environmental aspects

□ Increased-OM balance, Decreased- soil N losses

- ✓ Increased- Maskalai, Vura, Lentil, Maize
- ✓ Green manure, Less chemical fertilizer, Symbiotic N
- Farmers want to change the crops if profitable (Roy et al., 2012)
- ➤ Green manure increases the OM balance (Chander et al., 1997)
- ➢ Leguminous crops decreased 50-100kg fertilizer(N) ha⁻¹ (Fageria, 2007)

5. Conclusions

- ✓ Increased profit (10-209%)
- ✓ Decreased feed costs (4-25%)

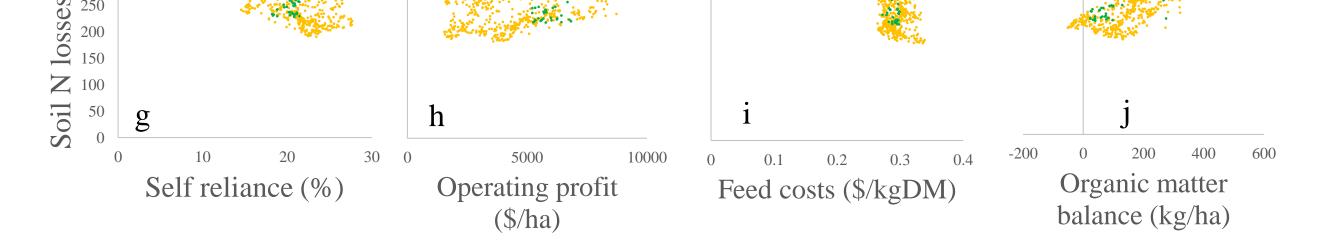


Figure 3: Pareto-optimum solutions from the J-large farm scenario

Key change: External feed

- Decrease- wheat bran, mustard oil cake
- Increase- Napier, maize silage, urea treated rice straw
 On-farm feed
- ✓ Decrease- rice straw
- ✓ Increase- Vura grass, Napier, maize grass, lentil, maskalai

- ✓ Increased Self reliance (7-25%)
- ✓ Increased OM balance (4-650%)
- ✓ Decreased Soil N losses (4-21%)

