

# Effects of Transhumance and Vegetation Type on Soil Quality of Rangelands in Northern Benin

Rodrigue V. Cao Diogo<sup>1</sup>, Luc Hippolyte Dossa<sup>2</sup>, Pénéloppe G.T. Gnavo<sup>1</sup>, Eva Schlecht<sup>3</sup>, Andreas Buerkert<sup>4</sup>

<sup>1</sup>University of Parakou, Department. of Science and Technics of Animal Production and Fisheries, Benin <sup>2</sup>University of Abomey-Calavi, Faculty of Agricultural Sciences, School of Science and Technics of Animal Production, Benin

<sup>3</sup>University of Kassel / Georg-August-Universität Göttingen, Animal Husbandry in the Tropics and Subtropics, Germany <sup>4</sup>University of Kassel, Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics, Germany

#### **Introduction and Objectives**

- Long-distance cattle transhumance (Fig. 1) is a widespread dry season phenomenon across West Africa. However, transhumant herds may degrade the environment, although the dungs deposited (Fig. 2) may improve soil health and the ecology of rangeland soils.
- To elucidate this further, the effects of two grazing intensities and three vegetation types (VT) were evaluated on soil quality of rangelands in two municipalities of northern Benin.





-12"00"N Sites

- The municipalities of Sinendé and Tchaourou in northern-Benin (Fig. 3),
  two host areas for cross-border cattle transhumance were chosen.
- The three representative VT of these locations were: Open forest/woodland savannah; wooded savannah/shrub savannah and crop field mosaic.
- Strong (ST) and weak (WT) transhumance zone were delineated
  with local community help and based on existing transhumance maps.

municipalities of Sinendé and Figure 1: Cattle on natural rangeland (Sinendé).

### Methodology

- 90 soil samples were collected from 90 randomly selected plots of 100 m<sup>2</sup> (30 in ST and 15 in WT zones in each municipality) in 5 different spots of 1 m<sup>2</sup> using an auger.
- The composite soil samples were analyzed for texture, pH and organic matter contents. Soil compaction was monitored through a penetrometer (Fig. 4) driven at 5 cm depth which showed the pressure exerted on the soils.





Figure 3: Map of Benin showing the study sites.

#### **Results**

Table 1: Effects of transhumance zone and vegetation type on selected soil properties of rangelands in northern Benin

| Variables | ST      | WT      | Cfm     | Of/Ws   | Ws/Ss   | VT  | ΤZ | TZ x<br>VT |
|-----------|---------|---------|---------|---------|---------|-----|----|------------|
| Pressure  |         |         |         |         |         |     |    |            |
| (t/m²)    | 183.2   | 145.4   | 145.3   | 151.75  | 196.6   | *   | ** | NS         |
|           | ± 83.61 | ± 46.65 | ± 70.16 | ± 63.06 | ± 67.08 |     |    |            |
|           |         |         |         |         |         |     |    |            |
| OM (%)    | 2.1     | 2.2     | 2.1     | 2.7     | 1.7     | *** | NS | NS         |
|           | ± 0.91  | ± 0.66  | ± 0.66  | ± 0.72  | ± 0.77  |     |    |            |
| рН        | 6.6     | 6.3     | 6.4     | 6.4     | 6.5     | NC  | NC | NS         |
|           | ± 0.66  | ± 0.55  | ± 0.51  | ± 0.72  | ± 0.69  | 011 | NS |            |



Figure 4: Determination of soil compaction using a penetrometer.

Of/Ws: Open forest/woodland savannah

Ws/Ss: wooded savannah/shrub savannah

Cfm: Crop field mosaic

OM: Organic matter content TZ: Transhumance zone VT: Vegetation type ST: Strong transhumance WT: Weak transhumance



NS: Not Significant; \*\*\* P  $\leq$  0.001, \*\* P  $\leq$  0.01, \* P< 0.05 ANOVA test.

- Soils pH was neither affected by vegetation type nor by transhumance.
- The organic matter content was similar across transhumance zone, but varied across vegetation type.
- Soil compaction was significantly affected by vegetation type and transhumance.
- This reflects a strong pressure exerted by cattle on the soil.

#### Conclusion

- Transhumance affects soil compaction but does not affect its fertility.
- Moving herds strategically from one pasture to the other, may help decrease rangeland soil degradation, and improve its quality and productivity.

#### Further studies must evaluate the appropriate

carrying capacity of rangelands to avoid soil compaction while taking advantage of the dungs deposited for soil health improvement.

#### Acknowledgements

We are grateful to the Volkswagen Foundation, Hannover, Germany for funding this research and the local communities for facilitation of the study.



## Figure 2: Cattle dungs deposited on natural rangeland.