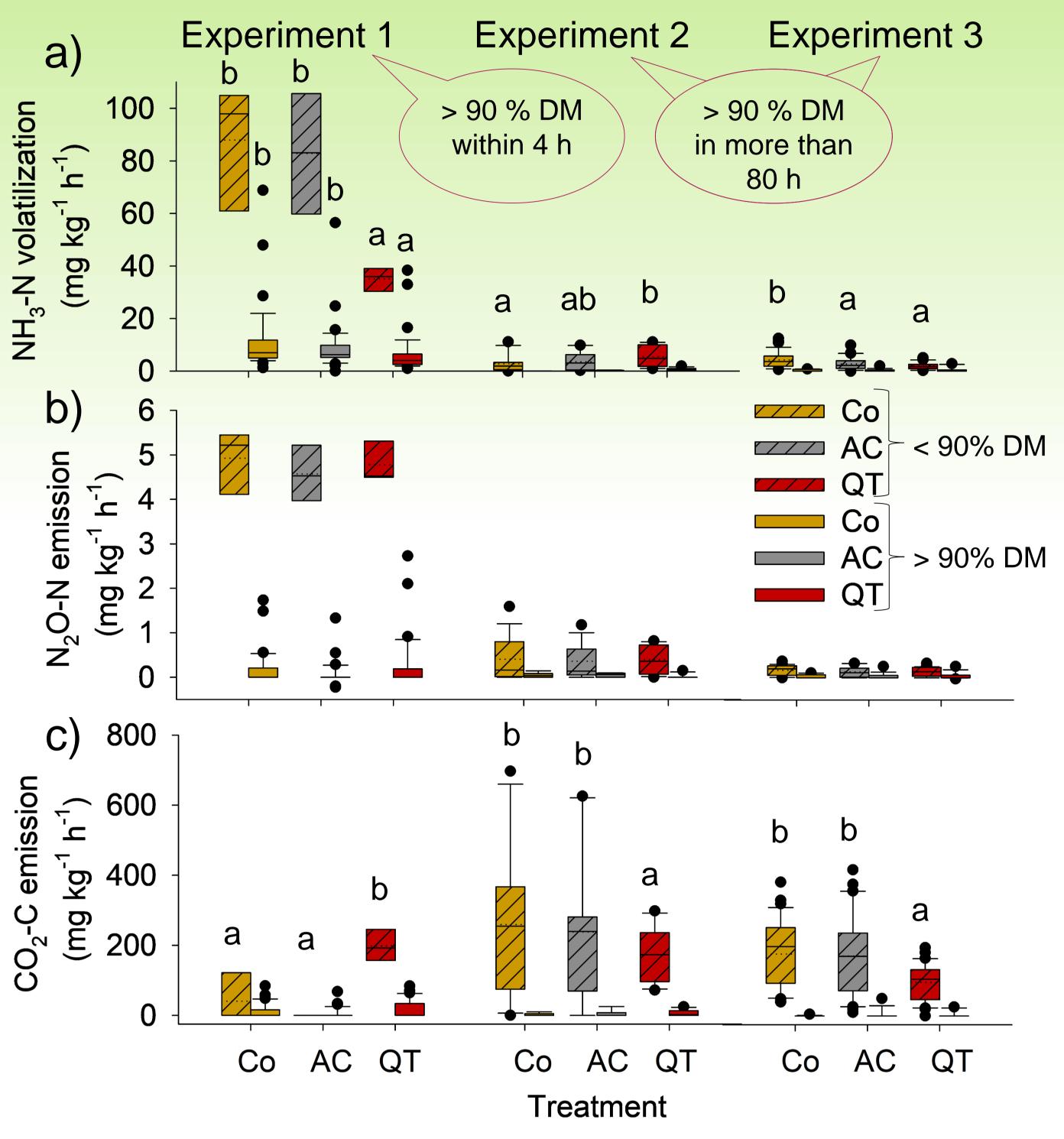
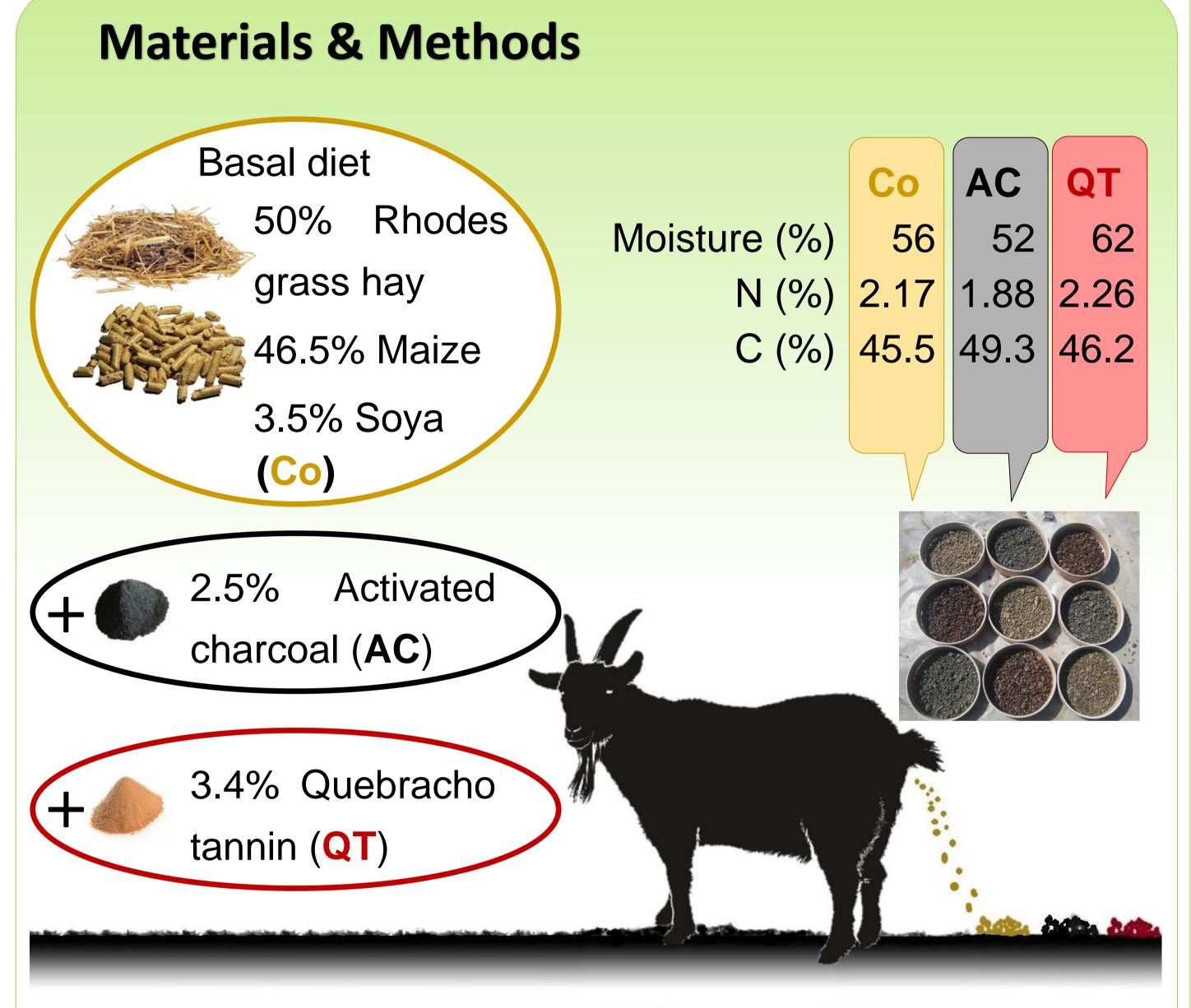


Gaseous N and C losses during sun-drying of goat manure – Effects of drying conditions and feed additives


¹Mariko Ingold, ³Herbert Dietz, ³Eva Schlecht and ¹Andreas Buerkert

¹ Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), Universität Kassel-Witzenhausen, Germany ²Royal Gardens and Farms, Royal Court Avvairs, Sultanate of Oman ³Animal Husbandry in the Tropics and Subtropics (AHTS), Universität Kassel-Witzenhausen, Germany


Introduction & Objectives

- Animal manure is key resource in farming systems of arid and semi-arid regions
- Improper storage of manure leads to carbon (C) and nitrogen (N) losses
- Charcoal and tannins used as feed additives can stabilize organic matter and nitrogen (N) in manure
- Research question: Can feed additives reduce gaseous

Results and Discussion

N and C losses during sun-drying and storage of manure

Figure 4 Boxplots of NH_3 -N (a), N_2O -N (b), and CO_2 -C (c) emission rates from drying manure (< 90% DM) and after reaching constant weight (> 90% DM) measured in three experiments in Sohar, Oman.

Under quick drying conditions (experiment 1) low CO₂ emission

Figure 1 Schematic illustration of experimental treatments, manure properties and set-up of manure

- Manure from male Jebel AI Akhdar goats fed the three diets Co, AC, and QT in Sohar, Oman
- Pooled manure dried on plastic sheets in the sun in three experiments
- NH₃, N₂O, and CO₂ emissions from drying manure measured for five days
- Photo-acoustic multi-gas analyzer (Innova 1312) connected by Teflon tubing to a closed chamber (4 min

ingold@uni-kassel.de

Figure 2 Goat with fecal collection bag in individual crates

- and considerable NH_3 volatilization rates, even after reaching > 90% DM (\rightarrow storage losses)
- Slow drying (experiments 2 and 3) lead to high CO_2 emissions and very low NH_3 volatilization (\rightarrow microbial immobilization)
- N₂O emissions were insignificant and unaffected by treatment
- AC did not consistently affect gaseous C and N losses
- QT reduced N and C losses by up to 64% in two experiments

Table 2 Cumulative N and C emissions during drying of manure in three experiments conducted in Sohar, Oman, and overall N and C losses related to C and N input. Letters indicate significant treatment effects.

		Experiment 1		Experiment 2		Experiment 3		Overall	
		mg N kg ⁻¹	(SD)	mg N kg ⁻¹	(SD)	mg N kg ⁻¹	(SD)	% of initial N	
	Со	252 b	(51.9)	138	(27.8)	295 b	(12.5)	0.6-1.4	
	AC	207 ab	(38.0)	151	(27.9)	112 a	(33.1)	0.6-1.1	
and a second	QT	128 a	(18.4)	208	(31.1)	107 a	(17.2)	0.5-0.9	
		g C kg⁻¹	(SD)	g C kg⁻¹	(SD)	g C kg⁻¹	(SD)	% of initial C	
	Со	0.1	(0.09)	7.9 a	(0.07)	10.2 c	(0.49)	0.0-2.2	
	AC	0.0	(0.00)	10.5 b	(11.12)	7.2 b	(0.64)	0.0-2.1	

5.4 ab (1.34)

4.3 a (0.32)

0.1-1.2

S

S

n e b

C

9

Q

2.

C

tu

accumulation period)

 Gas flux calculation (R²>0.6) using linear regression (R package
 Figure 3 In-field gas emission measurement

'gasfluxes')

Table 1 Conditions of the three manure drying experiments conducted in Sohar.

Experiment	Time until DM > 90%	Manure	Mean Temp.	Min. RH	Max. RH
	h	kg FM m ⁻²	°C	%	%
1	4	1.4	32.2	36.4	83.8
2	79	10.8	29.6	8.5	71.7
3	84	8.8	20.5	43.8	82.2

Conclusions

(0.19)

0.3

- Only minor amounts of initial C and N lost from manure via gaseous emissions during sun-drying
- Slow drying favors (Exp. 2+3) microbial activity (CO₂ emissions) possibly immobilizing N and lowering NH₃ volatilization also during storage
- ➡ Feeding QT reduces gaseous C and N losses by up to 64% → promising feed additive for improved N cycling

www.uni-kassel.de/fb11agrar/

man and the state

QT