The interest on Adansonia digitata fruit pulp has grown during last decades, due to its functional properties. The derived nectar is one of the most consumed product. This study assessed the pasteurized baobab fruit pulp nectar technologies used in Benin and their effects on the derived nectar’s quality.

Figure 1: Baobab tree (a), fruits (b) and Pasteurized baobab pulp nectar (c)

Figure 2: Pasteurized baobab pulp nectar processing technologies

The Baobab nectars derived from the two technologies are not significantly different (p<0.05) based on the physicochemical quality (Table 1), but the vitamin C content was reduced for about 35% in comparison to the pulp for about 299.13±9.0 mg/100g to 209.8±8.7 mg/100g; the color derived nectars were the same (Figure 2).

Table 1: Quality of derived Pasteurized nectars

<table>
<thead>
<tr>
<th>Sample</th>
<th>Nectar T_a</th>
<th>Nectar T_b</th>
<th>Baobab pulp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brix</td>
<td>12.92±0.2a</td>
<td>12.17±0.2a</td>
<td>-</td>
</tr>
<tr>
<td>pH</td>
<td>2.69±0.1a</td>
<td>2.66±0.2a</td>
<td>-</td>
</tr>
<tr>
<td>TTA (g/L dw)</td>
<td>717.0±12</td>
<td>735.0±22.9a</td>
<td>-</td>
</tr>
<tr>
<td>DM (g/100g)</td>
<td>13.1±0.3a</td>
<td>12.6±0.4a</td>
<td>-</td>
</tr>
<tr>
<td>Lightness</td>
<td>73.3±0.3a</td>
<td>74.2±0.1a</td>
<td>-</td>
</tr>
<tr>
<td>Vc (mg/100g dw)</td>
<td>180.0±57.0a</td>
<td>209.8±8.7a</td>
<td>299.13±9.0</td>
</tr>
</tbody>
</table>

The mean values with different letters in raw are significantly different.

Figure 3: Color of Pasteurized nectars

Conclusion

Two technologies are used to pasteurize Baobab fruit pulp nectars in Benin. Both ways have a significant impact on the nutritional quality of the baobab nectar; almost 35% of the vitamin C content is destroyed during the heating processes. The remaining amount is still high (180-209 mg/100g) compared to conventional fruits.

Acknowledgements

RUFORUM Grant No RU/2018/CARP+/01