INTRODUCTION

About 80% of the population in developing and 60% in developed countries use traditional medicine as their primary health care to treat diseases [1]. One third of the world's population does not have regular access to essential medications. In rural communities, traditional medicine is more affordable and cheaper sources (2,3).

Mexico is considered the second country with the greatest floristic diversity with medicinal importance (4). Also it has a great ethnic variety, with 68 ethnic groups and 25 million indigenous people (21.5% of the Mexican population) and in the State of Chiapas it is inhabited by 11 ethnic groups (14.2%) [6,7,8].

Almost 70% of the main problems affecting the indigenous communities are: surgery (10.8%), pediatrics (15.6%), internal medicine (13%), gynecology and obstetrics (17.8%), trauma (9.9%) [8].

The main diseases faced by indigenous people in Chiapas are: heart disease (12%), malignant tumors (7.7%) accidents (6.3%), infectious intestinal diseases (5.8%), diabetes mellitus (4.5%), renal failure (4.3%), pneumonia (3.9%) mainly liver (3.3%) and cerebrovascular (3.3%) diseases [9,10].

This study aimed to collect valuable ancient knowledge of traditional medicine in mocho communities. Currently, traditional knowledge is being lost, due to high migration, there are not written records, lack of interest of new generations and loss of biodiversity of medicinal plants.

In total 83 medicinal plant species, belonging to the 44 families were documented.

RESULTS

The parts more used were leaves (46%), awhole plant (stem 22%), seed (9%), flower (8%), root (6%) and fruit (6%) and bark (1%).

Leaves store most of the chemical compounds in the form of secondary metabolites with biological activity

<table>
<thead>
<tr>
<th>No</th>
<th>Scientific name</th>
<th>Treated for diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Matricaria chamomile L.</td>
<td>respiratory system, digestive system, colic pain, fever, daphne, emollient charges and eye problem</td>
</tr>
<tr>
<td>2</td>
<td>Verbena 1irotaxis Kunth</td>
<td>stomach pain, stomach cramps, ulcers, vomiting, diarrhea, cough infections, typhoid, bronchitis, dermatitis, malaria, diabetes, fever, and some sexually transmitted diseases</td>
</tr>
<tr>
<td>3</td>
<td>Bursera simaruba (L.)</td>
<td>skin affection like sores, measles, sunburns, insect bite and washes</td>
</tr>
<tr>
<td>4</td>
<td>Dysphania ambrosioides</td>
<td>intestinal parasites of humans and domestic animals antifungal activity against different ailments, microorganisms, intestinal parasites, cramps, ulcers, indigestion, colds, asthma, flu and pneumonia</td>
</tr>
<tr>
<td>5</td>
<td>Ruta graveolens</td>
<td>menstrual pain, anxiety, stress, stomach ache and cold gastrointestinal complaints, bronchitis, antihypertensive</td>
</tr>
</tbody>
</table>

According to the results, 93% of the total participants used traditional medicine to solve health problems. To calculate ICF, the reported ailments were classified to 11 different disease categories (Table 2).

MATERIALS AND METHODS

Fieldwork was carried out from March to October 2016 in four communities of Motolintza, Chiapas.

The data were collected by semi-structured interviews, sampling were based on the methodology with a random sampling. All the informants were indigenous and permanent residents of the community “Mocho”.

On the ethnobotanical information, it included sources of traditional knowledge, uses of the plants, mode of administration, plant parts harvested, and dosage for each remedy.

All plant material was collected and identified taxonomically with periodic visits to different botanical gardens and the herbariums.

DATA ANALYSIS

Collected data were transformed into Use Report (UR) and Relative Frequency of Citation (RFC). Then this data was analyzed using the next ethnomedicinal indices:

- Medicinal Use Value (MUV) demonstrates the relative importance of the species for medicinal purposes.

\[
MUV = \sum \text{UR} / N
\]

- Informant Consensus Factor (ICF) shows the homogeneity of knowledge about using the species in each disease’s category.

\[
ICF = (n_{ur} - n) / (n_{ur} - 1)
\]

CONCLUSION

For treating 11 categories of diseases, 83 species of medicinal plants were registered. Among all the categories, diseases of gastrointestinal and gastrointestinal systems had the highest number of references and ur reports. The highest ICF index had diseases of the reproductive system (0.76), diseases of the skin and musculoskeletal system (0.75).

It is necessary to carry out more ethnobotanical studies and inventories to preserve this knowledge for future generations, therefore traditional medicine could be a good source of information for the developing new drugs.

There is not control in the wild gathering of the used plants by the locals, and it could affect the future availability of the plants in the surrounding ecosystems.