Physicochemical and Microbiological Properties of Amazonian Soils under Intensive Crop System

Dr. Roldán Torres Gutiérrez
Regional Amazon University Ikiam, Ecuador
roldan.torres@ikiam.edu.ec

September 09, 2020
Diversification: key for sustainability

Industrialized agriculture:
• Specialization of the monoculture of more economically productive species.
• Supported by the use of agrochemicals, mechanization and genetically modified crops.

Lead to:
• Lost of farmers autonomy.
• Environmental problems have been generated in the agroecosystem, which finally have an impact on global productivity.

Biodiversity is the base for sustainable development

Convention on Biological Diversity (2020)
Diversification: key for sustainability

Megadiversity of Ecuador

- **Biodiversity**
 There are 46 different ecosystems

- **Species:**
 - Plants: 25,000
 - Reptiles: 483
 - Amphibians: 629
 - Mammals: 440
 - Birds: 1,690

- **Microorganisms**

- **Ecosystem services**
Importance of pitahaya as a diversifier crop

The Ecuadorian Amazon represents 43% of the national territory.

It has 605,052 ha (11.8%) of its surface for agricultural use.
Importance of pitahaya as a diversifier crop

- **Adaptation to Amazonian climates:**
 Poor soils with very low pH.

- **High yields per area:**
 From 10-15 t ha\(^{-1}\).

- **Medicinal and nutritional properties:**
 Antioxidants, laxatives, stimulates the immune system, prevents degenerative diseases, proteins, vitamins (C), and minerals.

- **High economic returns:**
 $40-45 million USD per year.

- **Easy markets:**
 Stable commercialization to more than 4 continents.
Importance of pitahaya as a diversifier crop

1 737 ha
(ProEcuador, 2018)

According to the 1st census of pitahaya (MAG, 2019), in the Morona Santiago province about 2 000 ha of the crop are planted, most of them under intensive crop system.
What impact does the intensive pitahaya crop system have on the physicochemical properties and microbial communities of the soil in the most producer area of Ecuador?
To determine the effect of pitahaya (*Hylocereus triangularis*) intensive crop system on physicochemical properties and microbiological parameters of Amazonian soils.
Experimental área: soil sampling

5 composite samples in 3,5 ha for each crop

P-1

P-2

P-5

P-4

P-3

Depths
0 - 10 cm
10 - 30 cm

Pitahaya

Tea
Soil samples analyses

Physical properties

• **Texture**: hydrometer method of BOUYOUCUS, (Burt, 2004).
• **Apparent density**: metal cylinder method (Kiessling, 2012).
• **Saturated hydraulic conductivity**: variable load method (Gabriels, Lobo y Pulido; 2013).
• **Distribution of pore sizes**: tension table method (Bravo et al., 2017).

Chemical properties

• **Soil organic matter (OM)**: calcination, (Schulte y Hopkins, 1996).
• **Soil pH**: Potentiometer method (López y Zamora, 2016).
• **Exchangeable aluminum and acidity**: titration method with NaOH (Kenyi y Rodríguez, 2017).
• **% total nitrogen (TN)**: Kjeldahl method, (CHEMILAB, 2015).
• **Exchangeable bases (Ca, Mg, K y P)**: Olsen modificado, (Bravo, 2015).

Microbiological indicators

• **Quantification of bacterial and fungal communities**: Colony Forming Units (CFU), quantitative dilutions and plating in Petri dishes (Chandrapati y Williams, 2014).
• **Microbial growth kinetics**: 24h, 48h, 72h, 7 days.
• **Microbial diversity**: Simpson index (D_s), Shannon index (H')
Effect on soil texture

Table 1. Soil texture under crop systems (pitahaya and tea).

<table>
<thead>
<tr>
<th>Crop system</th>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
<th>Textural class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-10 cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitahaya</td>
<td>49.4±6.57</td>
<td>28.0±1.58</td>
<td>16.6±2.76</td>
<td>Sandy loam</td>
</tr>
<tr>
<td>Tea</td>
<td>58±1.37</td>
<td>30.8±0.86</td>
<td>11.2±1.15</td>
<td>Sandy loam</td>
</tr>
<tr>
<td></td>
<td>Depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-30 cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitahaya</td>
<td>57.6±8.45</td>
<td>29.6±1.93</td>
<td>6.8±0.96</td>
<td>Sandy loam</td>
</tr>
<tr>
<td>Tea</td>
<td>62.2±4.58</td>
<td>25.2±2.61</td>
<td>12.6±2.50</td>
<td>Sandy loam</td>
</tr>
</tbody>
</table>

No significant differences (p <0.05) for the variables evaluated were shown.
Table 2. Physical soil properties under crop systems (pitahaya and tea).

<table>
<thead>
<tr>
<th>Sistema de cultivos</th>
<th>Ad (mg·m⁻³)</th>
<th>K\textsubscript{sat} (cm·h⁻¹)</th>
<th>Tp (%)</th>
<th>Ap (%)</th>
<th>Rp (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth 0 - 10 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitahaya</td>
<td>0.41±0.06</td>
<td>25.86±21.87</td>
<td>91.05±21.76</td>
<td>24.21±8.59</td>
<td>87.04±13.20</td>
</tr>
<tr>
<td>Tea</td>
<td>0.32±0.007</td>
<td>0.36±0.15</td>
<td>87.32±0.89</td>
<td>8.51±0.27</td>
<td>78.81±0.83</td>
</tr>
<tr>
<td>Depth 10 - 30 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitahaya</td>
<td>0.38±0.01</td>
<td>0.36±0.15</td>
<td>87.32±0.89</td>
<td>8.51±0.27</td>
<td>78.81±0.83</td>
</tr>
<tr>
<td>Tea</td>
<td>0.33±0.02</td>
<td>0.10±0.01</td>
<td>89.72±1.54</td>
<td>7.84±0.38</td>
<td>81.88±1.22</td>
</tr>
</tbody>
</table>

No significant differences (p <0.05) for the variables evaluated were shown.

Soil samples analyses

Table 3. Chemical soil properties under crop systems (pitahaya and tea).

<table>
<thead>
<tr>
<th>Properties</th>
<th>Crop systems</th>
<th>Pitahaya</th>
<th>Tea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depth 0-10 cm</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>pH</td>
<td>5,06±0.13</td>
<td>4,90±0.09</td>
<td></td>
</tr>
<tr>
<td>Al+H</td>
<td>1,14±0.24</td>
<td>1,5±0.23</td>
<td></td>
</tr>
<tr>
<td>Al⁺</td>
<td>0,42±0.07</td>
<td>0,54±0.10</td>
<td></td>
</tr>
<tr>
<td>% TN</td>
<td>0,55b±0.02</td>
<td>0,71a±0.02</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>6,14±1.76</td>
<td>8,10a±1.25</td>
<td></td>
</tr>
<tr>
<td>K⁺¹</td>
<td>0,19±0.21</td>
<td>0,16±0.03</td>
<td></td>
</tr>
<tr>
<td>Ca⁺²</td>
<td>1,47±0.81</td>
<td>0,54±0.04</td>
<td></td>
</tr>
<tr>
<td>Mg⁺²</td>
<td>0,37±0.07</td>
<td>0,29±0.02</td>
<td></td>
</tr>
<tr>
<td>% OM</td>
<td>27,06b±1.42</td>
<td>33,3a±1.73</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Properties</th>
<th>Crop systems</th>
<th>Pitahaya</th>
<th>Tea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depth 10-30 cm</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>pH</td>
<td>5,16±0.08</td>
<td>4,93±0.08</td>
<td></td>
</tr>
<tr>
<td>Al+H</td>
<td>0,68±0.15</td>
<td>0,84±0.06</td>
<td></td>
</tr>
<tr>
<td>Al⁺</td>
<td>0,32±0.07</td>
<td>0,38±0.04</td>
<td></td>
</tr>
<tr>
<td>% TN</td>
<td>0,79a±0.07</td>
<td>0,50b±0.21</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>3,54±1.60</td>
<td>2,42b±0.37</td>
<td></td>
</tr>
<tr>
<td>K⁺¹</td>
<td>0,19±0.04</td>
<td>0,09±0.01</td>
<td></td>
</tr>
<tr>
<td>Ca⁺²</td>
<td>0,81±0.23</td>
<td>0,34±0.03</td>
<td></td>
</tr>
<tr>
<td>Mg⁺²</td>
<td>0,19±0.006</td>
<td>0,18±0.008</td>
<td></td>
</tr>
<tr>
<td>% OM</td>
<td>8,95±1.43</td>
<td>9,81±0.63</td>
<td></td>
</tr>
</tbody>
</table>

Al+H: exchangeable acidity (meq 100g of soil⁻¹); Al+: exchangeable aluminum (meq 100g of soil⁻¹); % TN: percentage of total nitrogen; P: phosphorus (mg * kg⁻¹); K⁺¹: potassium (meq 100g of soil⁻¹); Ca⁺²: calcium (meq 100g of soil⁻¹); Mg⁺²: magnesium (meq 100g of soil⁻¹); % OM: percentage of organic matter. The values for the rows are the result of five replications for each treatment ± the standard error of the mean. Unequal letters in the rows differ p < 0.05 by Tukey HSD.
Figure 1. Bacteria Colonies Forming Units (CFU) under **pitahaya (MP)** and **tea (MT)** crop systems. Unequal letters over columns differ $p<0.05$ by Dunnett C.
Faster growth of bacteria in tea culture compared to pitahaya.

It shows the bacteria adaptation to the ecosystem without agrochemicals application.

Figure 2. Bacteria kinetic (CFU) under pitahaya (PM) and tea (MT) crop systems at 24 h, 48h, 72 h and 7 days after plating. Unequal letters over columns differ $p<0.05$ by Dunnett C.
Soil samples analyses

Figure 3. Fungal Colonies Forming Units (CFU) under pitahaya (MP) and tea (MT) crop systems. Unequal letters over columns differ $p<0.05$ by Dunnett C.
Soil samples analyses

Faster growth of bacteria in tea culture compared to pitahaya.

It shows the bacteria adaptation to the ecosystem without agrochemicals application.

Figure 4. Fungal kinetic (CFU) under **pitahaya (PM)** and **tea (MT)** crop systems at 24 h, 48h, 72 h and 7 days after plating. Unequal letters over columns differ \(p<0.05 \) by Dunnett C.
Soil samples analyses

Figure 5. Comparison of total CFU of bacteria and fungi in soils with pitahaya (MP) and tea (MT) crop systems. Unequal letters over columns differ $p<0.05$ by Dunnett C

Significant reduction of CFU in pitahaya

Bacteria: 67%
Fungi: 52%
Soil samples analyses

Figure 6. Comparison of diversity indices for bacteria (A) and fungi (B) in soils with pitahaya and tea crop systems. Shannon index (H'), Simpson index (D_{si}).
Conclusions

- The intensive pitahaya crop system does not have a negative effect on the texture and physical properties of the soils. However, it reduces the % TN and % OM.

- Bacterial and fungal communities have low adaptability to pitahaya soils, demonstrated in growth kinetics at 24 and 48 h.

- The intensive pitahaya crop system reduces bacterial communities by 67% and fungal communities by 52%. Ecosystem services are compromised.

- The intensive pitahaya crop system does not significantly influence the diversity of communities of fungi and bacteria in the soil.
Perspectives

• Carry out studies in other production areas of pitahaya under Amazonian conditions and with organic crops to validate these results.

• Perform molecular analysis of the prominent isolates obtained for the determination of potential biofertilizers, biocontrollers or bioremediators.

• Make the producers aware of the negative effect of the intensive pitahaya crop system on soil microorganisms, the % TN and % OM.
MANY THANKS