Comparative Nitrogen Use Efficiency of Urea, Manure and Different Mulch Types in Horticulture in Semi-arid Bolivia

Laura Kuonen¹, Noemi Stadler-Kaulich², Lindsey Norgrove¹

¹ Bern University of Applied Sciences; School of Agricultural, Forest & Food Sciences, Zollikofen, Switzerland, ² Mollesnejta - Centre for Andean Agroforestry, Combuyo, Bolivia

Contact: laura.kuonen@gmail.com, www.mollesneita.org, www.ecosaf.org

12 WAP, urea treatments had tallest onions (Fig. 1)

8 weeks after planting (WAP), urea₁ had most weed biomass

Onion (*Allium cepa*) important in Bolivia - Mulch vs eqv N might:

Results

- Improve growth & yield
- Release nutrients in synchrony with crop growth
- Suppress weeds
- Increase soil moisture
- Reduce soil erosion
- Yet effects might depend on shade

Would you like to see where and how the experiment was set up? Scan the code!

Methods

Onions planted January 2019

- 7 treatments (table 1)
- 4 reps, distance from tree boundary as blocking factor
- RCBD

Parameters:

- Plant height (ht)
- Circumference at base (circ)
- # new leaves (#lfnew)
- # green leaves (#lf_{gr})
- Fresh wt Weeds (Weed)
- Onion yield (Y)
 % survival (%s)
- % Survival (%S

Melinis repens had more total & green leaves than other mulch treatments (Table 1) At harvest:

- Urea 1 had highest yield (6.3 Mg FW/ha), sig. higher than all others except *Melinis repens* treatment

12 WAP, no sig. diff. between control & farm yard manure for any parameter

Urea 2: lowest % of onions harvested (68%), sig. lower than all others except control & *Dodonaea viscosa*

Conclusions

Fig. 1: Onion plants at 12 weeks

- Urea @ 80 kg N_{eqv}/ha worked well
- Manure not recommended at current rate
- Soil H_2O % & temperature not assessed; to be done in 2020
- *Melinis repens* best performing mulch

Acknowledgement Special thanks to the lab of Universidad Catolica Boliviana de Cochabamba for the analyses!

Table 1: Experimental treatments: those with same letters in same column are not sig. diff.

Treatment	N _{eqv} (kg/ha)	ht	circ	# lf new	# lf gr	Weed
Control	0	a	a	a	a	a
Dodonaea viscosa	45	b	a,b	a,b	a,b	a,b
Chamaecytus proliferus	40	b,c	с	a,b	a,b,c	a,b,c
Melinis repens	25	b,c,d	b	с	d	a,b,c,d
Farm yard manure	~150	a	a	a,b	a,b,c	a,b,c,d,e
Urea 1 (46% N)	80	e	d	с	d,e	
Urea 2 (46% N)	40	d,e	c,d	d	b,c,e	a,b,c,d,e

Bern University of Applied Sciences School of Agricultural, Forest and Food Sciences HAFL

Tropentag, September 18-20, 2019, Kassel

MOLDESNEUTA