

Tropentag 2019 University of Kassel, Kassel, Germany September 18-20, 2019

Farmer adaptation and coping of climate variability-induced shocks in Ethiopia: Disentangling household-specific determinants of ex-ante and ex-post strategy choices

Habtamu D. Yismaw¹ (h.demilewyismaw@uni-hohenheim.de), Christian Troost¹, Moti Jaleta², Thomas Berger¹

¹Land Use Economics in the Tropics and Subtropics, University of Hohenheim ²International Maize and Wheat Improvement Centre (CIMMYT), Ethiopia

Background

 Climate variability-induced shocks, mainly drought, pests, crop disease and hailstorm, have been posing formidable policy

Results

Method: Logistic principal component analysis (LPCA)

Variables - PCA

- challenges in Ethiopia for several decades.
- Shocks do not only cause hunger and income deprivation in the moment they occur, but also lead to a loss of farm assets that hamper productivity and income opportunities of the farmer in the long run.
- Smallholder welfare, both in short and long run, depends on their choice of strategies to deal with these shocks before (*ex ante*) and after (*ex post*) their occurrence.
- These choices are farmer-specific due to a strong heterogeneity of farmers' socioeconomic settings (Berhanu and Beyene 2015; Wossen 2018; Caeyers and Dercon 2012; Berger et al. 2017).

What are dominant *ex* ante and ex post strategies?

Fig. 5. Correlation plot of strategies and PCs

Drought		Hailstorm		Pests	
EA	EP	EA	EP	EA	EP
Drought tolerant crops, drought tolerant varieties, early planting, soil and water conservation	replanting, reducing consumption, selling		Replanting, reduce consumption, selling livestock, borrowing	Pest tolerant varieties, crop diversification	Sell other assets, reduce consumption, sell livestock, replanting

Reduce cons

Stored crops

Borrow Gov. aid

Rent land

PC1

Dissaving Stop school Replanting

0.25

Outmigration

Off-farm

-0.25

Table 1. Dominant strategies

Method: LPCA and Multivariate probit (MVP)

Fig. 6. Drought ex-post LPCA score plot and loading plot

PC1

Drought *ex-post* Complementary

Selling livestock & selling assets Selling assets & replanting Selling livestock & replanting Competitive

Reducing consumption or selling assets Reducing consumption or selling livestock

Objectives

- To disentangle household-specific determinants of farmers' choice of *ex-ante* adaptation and *ex-post* coping strategies to climate induced shocks &
- To identify complementary and competitive strategies.

Study area & data

- Baseline data from CIMMYT's SIMLESA project in Ethiopia collected in 2011
- 898 farm households from the major maize growing hotspots

strategies are complementary /

Which

Fig. 7. Clustered score of alternative PCAs

Table 2. MVP result: Correlation between strategies

- strong in both *ex* ante & ex post
- Competitiveness is prevalent in expost strategies
- Robustness requires multiple strategies

Method: MVP of interdependent adoption decisions

- Farmers' choice of strategies is highly idiosyncratic and heterogenous.
- Educated and male-headed households are more resilient to climate induced shocks.
- Participation in rural institutions (*iddir*,
- Farmers' resource endowments are more important in determining their *expost* strategy choices than *ex-ante* strategies

2.5

50

-2.5

0.0

Dim1 (13.3%)

• Farmers with frequent drought experience and high expectations of future droughts tend to reserve their

strategy choices?

What are

farmer-

specific

drivers of

Fig. 1. Sample districts

Methodology

SACAs, and religious associations) have a significant contribution in farmers' choices of ex-ante and ex-post strategies.

Farmers with strong social networks are more resilient.

Acknowledgement

productive assets to save their future and try to live by other less destructive means to escape the short run effect of drought on their livelihood.

- CIMMYT, Addis Ababa, Ethiopia provided the survey data
- Food Security Center, University of Hohenheim, Stuttgart, Germany provided financial support

References

Berger et al. 2017, Agricultural Economics 48 (6), pp. 693–706. Berhanu et al. 2012, Sustainability 7 (6), pp. 6353–6375. Caeyers et al. 2012, Economic Development and Cultural Change 60 (4), pp. 639–675. Kumar et al. 2012, Development Policy Review 30 (5), pp. 573-595. Wossen, T. 2018, Food Security in a Changing Environment.

