Monsoon crop biomass estimation using terrestrial hyperspectral imaging

Supriva Dayananda, Thomas Astor, Jayan Wijesingha, Michael Wachendorf Grassland Science and Renewable Plant Resources, Universität Kassel, Germany

Introduction

- Lablab, maize and finger millet are the major monsoon crops \bullet grown in the region of Bengaluru, India.
- Besides maize, lablab and finger millet biomass estimation lacksquareare still lacking.
- Hyperspectral remote sensing is an effective tool for crop monitoring and biomass estimation.

Objective

- To assess the potential of terrestrial hyperspectral imaging in ulletestimation of crop biomass for lablab, maize and finger millet. Methodology
- The study was conducted in rainfed and irrigated experimental \bullet fields of University of Agricultural Sciences, Bengaluru, India (Figure 1).
- The terrestrial hyperspectral measurements and biomass ulletsampling were conducted in varying N levels and water supply for lablab, maize and finger millet (Figure 2 and 3).

Subset for R² and rRMSEP testing (25%) *NDVI: Normalised Difference Vegetation Index

Figure 3. Workflow showing the data collection (green), data preparation (yellow) and data analysis (blue).

Results

Figure 1. (a) Location of Bengaluru within India; (b) design of rainfed experimental layout; (c) design of irrigated experimental layout

Figure 4. Prediction accuracies R² (a) and rRMSEP (b) values of the 100 models for fresh matter biomass of lablab, maize and finger millet.

The prediction accuracies based on the relative error \bullet (rRMSEP) was lower in generalised condition (lablab 14 %, maize 19 % and finger millet 18 %) (Figure 4).

Summary

Figure 2. Hyperspectral images of lablab, maize and finger millet.

- Generalised models built on crop data from both rainfed and irrigated conditions, are more robust than water management specific models.
- Sensor data fusion from a combination of sensors may improve the prediction performance.

GRÜNLANDLAND WISSEWISSENNWISSE SCHSCHAFTAFTSCHAF UNDUUNDNDUNDUND NACNACHHNACHNACH WACHWACHSENDESEN **ROHROROH**HROHROHR **STOFSTOFFEFESTOFFE**

Supriya Dayananda supriyad@uni-kassel.de