Sustainable management options for improved cassava-maize intercropping system and resource capture in southeastern Nigeria

Charles Chigenezu,1*, Christine Kreyer,2, Magda Necplova,2, Shola, Ejalonibu,3, Pieter Pynoo,1, Adeyemi Clojder,1, Stefan Hauser,1, Johan Six1,2
1Swiss Federal Institute of Technology, Switzerland; 2International Institute of Tropical Agriculture, Nigeria; 3National Root Crops Research Institute, Nigeria

Introduction
Cassava-maize intercropping is commonly practiced in southern Nigeria. Maize provides food and income early in the season (~3 months) before the cassava harvest (~9-15 months later). However, both crops produce low yields (cassava <10 t ha\(^{-1}\) and maize <10 t ha\(^{-1}\)) in farmers’ fields, while attainable cassava yields are >48 t ha\(^{-1}\) and maize yields are >5 t ha\(^{-1}\).

Materials and Methods
Four experiments (RCBD) with 6 treatments (Table 1) replicated 4 times were established in farmers’ fields in 3 contrasting environments of two agroecologies in Nigeria (Table 2). Maize variety was SAMMAZ 35, cassava variety was TME 419. Fertilizer was 0 (F0), 90:20:37 (F1) and 75:20:90 (F2) kg ha\(^{-1}\). N.P.K was applied as follows: F1: basal 300 kg ha\(^{-1}\) N.P.K 15:15:15, plus two equal splits of urea at 3 & 6 months after planting (WAP); F2: 100% P (as TSP) plus three splits of urea and MoP at 4, 11 & 17 WAP. Soil moisture at 20 cm soil depth was recorded daily every half hour with soil moisture probes connected to Decagon EM50 loggers. Starch content of freshly harvested cassava roots were determined in situ gravimetrically.

Table 1: Cassava, maize and fertilizer combinations

<table>
<thead>
<tr>
<th>Factor/Treatment</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassava density (plants ha(^{-1}))</td>
<td>12500</td>
<td>12500</td>
<td>12500</td>
<td>12500</td>
<td>12500</td>
<td>12500</td>
</tr>
<tr>
<td>Maize density (plants ha(^{-1}))</td>
<td>20000</td>
<td>40000</td>
<td>20000</td>
<td>40000</td>
<td>20000</td>
<td>40000</td>
</tr>
<tr>
<td>N.P.K rate (kg ha(^{-1}))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2: Characteristics of experimental sites over 40 (1950 - 2000) years

<table>
<thead>
<tr>
<th>Agroecology</th>
<th>State/Location</th>
<th>Mean annual temp. (°C)</th>
<th>Rainfall (mm yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hybrid/1</td>
<td>Anambra 1</td>
<td>26.1 – 27.8</td>
<td>1,561 – 1,821</td>
</tr>
<tr>
<td>2 Hybrid/2</td>
<td>Anambra 2</td>
<td>26.1 – 27.8</td>
<td>1,341 – 1,561</td>
</tr>
<tr>
<td>3 Hybrid/3</td>
<td>Cross River</td>
<td>24.4 – 26.1</td>
<td>2,208 – 2,450</td>
</tr>
<tr>
<td>4 Dense/4</td>
<td>Forest</td>
<td>20.8 – 24.4</td>
<td>1,136 – 1,341</td>
</tr>
</tbody>
</table>

Research objectives
To determine the effects of:
I. The different fertilizer regimes (F0, F1 and F2) on the growth and cob yield of maize and the fresh root yield of cassava,
II. maize planting density and fertilizer regime on soil moisture dynamics, and
III. N.P.K mineral fertilizer rates on starch content of fresh cassava roots.

Results
Maize number of marketable cob yield was higher at 40000 plant ha\(^{-1}\). This was highest under F1 (18973 ha\(^{-1}\)) regime followed by F2 (15083 ha\(^{-1}\)). Marketable cob yield increased in the order F1 > F2 > F0. Cassava root yield varied across location. Fertilizer (F2) consistently produced the highest fresh root yields across locations (Fig.1).

Figure 1: Effect of maize density and N:P:K application rates on cassava fresh root yield across 3 locations in Southern Nigeria

Soil water content was highest with F1 fertilizer regime under 40000 maize density (0.13 - 0.35 m\(^{-3}\)), and was relatively stable over the 6 months observation period (Fig.2). This was closely followed by F2 regime under similar maize density (0.02 – 0.31 m\(^{-3}\)). Under lower maize density (20000), F2 regime was better than F0 which had the least soil moisture content. Starch yield was highest under F2 fertilizer regime. There were no differences between F0 and F1 regimes on starch yield (Fig.3).

Figure 2: Effect of N:P:K fertilizer cassava fresh root starch content in cassava-maize intercropping systems in Southern Nigeria (Anambra)

Figure 3: Effect of N:P:K fertilizer cassava fresh root starch content in cassava-maize intercropping systems in Southern Nigeria (Anambra1)

Conclusion
- Increasing maize density up to 40000 plants ha\(^{-1}\) combined with either F1 or F2 mineral fertilizer is a viable option to improve cassava-maize intercropping productivity.
- At 40000 maize density under F1 or F2 regimes, it is practicable to conserve soil moisture in cassava-maize intercropping systems.
- F2 regime better for increased cassava fresh root and starch yields.

Acknowledgement
This study is supported by the Bill & Melinda the Gates Foundation

www.iita.org | www.cgiar.org