Bundesministerium für Ernährung und Landwirtschaft

Determinants of wild fruit collection and its impact on food security in rural Zambia

Ronja Seegers, Etti Winter Institute for Environmental Economics and World Trade, Leibniz University Hannover ronja.seegers@web.de

1. Introduction

- High rates of poverty, food insecurity and malnutrition ^[1,2,3]
- Staple-based diets with lack of micronutrients ^[1, 3]
- Wild fruits as supplementing food ^[4,5] and income source ^[6]
- Free access, great content of vitamins and minerals ^[5]
- Insufficient understanding of collection reasons and effect on food security ^[7]

Research Questions:

1) What are the determinants of wild fruit collection?

2. Data

- Data provided by FoSeZa (Food Security in Rural Zambia) project Socio-economic census: 215 households from Mantapala region
- Year: 2018
- Wild fruit context:
 - cultivation and analysis of nutritional value to improve food and nutrition

security

3. Methodology

Food Security Indicators

- Food Consumption Score (FCS):
 prevalence of consumption of different food groups ^[8]
- Reduced Coping Strategy Index (rCSI): households' coping behaviour during food shortages ^[9]

Econometric Models

1) Multiple Linear Regression Model

 $Ln(Y_i) = \beta_0 + \beta_1 X_i + \beta_2 D_i + \varepsilon$

- Y_i Collected quantity (kg) of wild fruits
 - (Uapaca kirkiana / Anisophyllea boehmii)
- X_i Vector of household characteristics
- D_i Dummies of wild fruit charactersitics

2) Ordered Logit Model

 $Pr(Y_i = j) = F(a_j - X_i\beta_1 + Q_i\beta_2) - F(a_{j-1} - X_i\beta_1 + Q_i\beta_2)$

- Categories of food security (FCS / rCSI)
- a_i Cut-offs of categories
- X_i Vector of household characteristcs
- Q_i Collected quantity of wild fruits (all species)

4. Results

Descriptive Results

Regression Results

1) Determinants of wild fruit collection

Table 1: Regression results: Determinants of collected quantity (kg) of most preferred fruit species.

2) Impact of wild fruits on food security

Table 2: Regression results: Impact of collected quantity of wild fruits (kg) on FCS

Figure 1: Percentage share of households collecting wild fruits.

Note: Robust standard errors in parentheses. Only significant results

Regressors	Coefficients	Marginal effects				
		Acceptable	Borderline	Poor		
Quantity of wild fruits (kg) ¹⁾	-0.00304* (0.00156)	0.000708** (0.000359)	-0.000311* (0.000170)	-0.000396** (0.000200)		
Observations	213	213	213	213		
Note: Robust standard errors in parentheses. Other regressors not shown. ¹⁾ Includes quantity collected of all wild fruit species. *** p<0.01, ** p<0.05, * p<0.1.						

Table 3: Regression results: Impact of collected quantity of wild fruits (kg) on rCSI

Regressors	Coefficients	Marginal effects		
		Food Secure	Moderately Food Insecure	Severely Food Insecure
Quantity of wild fruits (kg) ¹⁾	0.00115 (0.00116)	-0.000225 (0.000226)	-5.38e-05 (6.04e-05)	0.000279 (0.000282)

Figure 2: Mean annual quantity (kg) of wild fruits collected per household in dependency of food security categories (n=213).

¹⁾ Dummy takes value 1 if household walks less than 2 km as furthest distance, 0 if households walks more than 2 km.
 ²⁾ Dummy takes value 1 if household considers availability of fruit species as important, 0 if not important.
 *** p<0.01, ** p<0.05, * p<0.1.

 Household size highly determines collected quantity of both species, whereas effect of area

- size, distance to collect fruits and assessment
- of their availability depends on species
- 2) Higher quantities of wild fruits collected

increases probability of being food secure based on FCS but has no significant effect on food security with respect to rCSI

Policy Recommendations

- Further research on wild fruits and impact on food security
- Education programmes to raise awareness
- Analysis of nutritional value
- Promotion of cultivating, processing and trading
- Sustainable land use and forest management
- Marketing and advertisement

Note: Robust standard errors in parentheses. Other regressors not shown. ¹⁾ Includes quantity collected of all wild fruit species. *** p<0.01, ** p<0.05, * p<0.1.

References

- Save the Children (2016) Malnutrition in Zambia. Harnessing social protection for the most vulnerable. London, UK.
- CSO (2016) 2015 Living Conditions Monitoring Survey (LCMS) Report. Central Statistical Office (CSO). Lusaka, Zambia.
- 3. WFP (2019) Zambia country strategic plan (2019-2024). World Food Programme (WFP). Executive Board, Annual Session. Rome, Italy.
- 4. Shumsky, S., Hickey, G. and Pelletier, B. (2014) Understanding the contribution of wild edible plants to rural Socioecological resilience in semi-arid Kenya. Ecology and Society 19(4):34.
- 5. Fentahun, M.T. and Hager, H. (2009) Exploiting locally available resources for food and nutritional security enhancement: wild fruits diversity, potential and state of exploitation in the Amhara region of Ethiopia. Food Security 1, pp. 207-219.
- 6. Mithöfer, D. and Waibel, H. (2003) Income and labour productivity of collection and use indigenous tree products in Zimbabwe. Agroforestry Systems 59, pp. 295-305.
- 7. Asprilla-Perea, J. and Díaz-Puente, J.M. (2017) Importance of wild foods to household food security in tropical forest areas Food Security.
- 8. United Nations World Food Programme (2008) Food consumption analysis. Calculation and use of the food consumption score and food security analysis. Rome, Italy.
- Maxwell, D. and Caldwell, R. (2008) The Coping Strategy Index. A tool for rapid measurement of household food security and the impact of food aid programs in humanitarian emergenies. Field Methods Manual. Second Edition.