Partial C and N balances of small-scale farms

in a river oasis of Western Mongolian

Sven Goenster-Jordan¹, Greta Jordan¹, Baigal Ulziisuren², Andreas Buerkert¹

¹ Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), Universität Kassel-Witzenhausen, Germany

² Biology Department, National University of Mongolia, Ulaanbaatar, Mongolia

Introduction & Objectives

- Mongolia's national policy fosters the expansion and intensification of crop and forage production.
- Non-sustainable agricultural management practices may lead to disequilibria in soil surface balances of agricultural plots jeopardizing the scarce and susceptible agro-ecological resources of river oases.

The objectives of this study were:

- to calculate partial carbon (C) and nitrogen (N) balances,
- to identify measures to correct possible imbalances.

Conclusions

The observed negative C and N balances requires:

- → Increase of N input through alfalfa (*Medicago sativa* L.) cultivation,
- → Increase of C and N input through increased use of organic fertilizer provided by agro-pastoralists' livestock,
- Incorporation of fertilizers into soil to minimize gaseous emission.

Materials & Methods

- Quantification of major input and output fluxes for C and N.
- Calculation of partial soil surface balances for C and N.
- Where: Carrot (*Daucus carota* subsp. *Sativus* (Hoffm.) Schübl. &
 G. Martens), hay and rye (*Secale cereal* L.) plots in 6 study farms of agro-pastoralists in the river oasis Bulgan sum center.
- When: Growing seasons 2013 and 2014.

Results

Carbon	Inputs						Outputs	Inputs - Outputs	
•	Fertilizer	Irrigation	C-fixation	Deposition	Total	Biomass	Emission	Total	Total
-		k	g C ha ⁻¹ seaso	n ⁻¹	kg C ha ⁻¹ season ⁻¹			kg C ha ⁻¹ season ⁻¹	
Carrot	569	52	3597	5	4223	1799	3506	5305	-1082
Hay	569	12	4642	5	5229	2 321	4514	6835	-1606
Rye	569	38	3676	5	4289	1838	3861	5699	-1410

Nitrogen	Inputs						Outputs			Inputs - Outputs
	Fertilizer	Irrigation	N ₂ -fixation	Deposition	Seeds	Total	Biomass	Emission	Total	Total
	kg N ha ⁻¹ season ⁻¹							N ha ⁻¹ seasor	kg N ha ⁻¹ season ⁻¹	
Carrot	22.3	2.1	0.0	9.4	4.2	38.0	92.1	10.9	103.0	-64.9
Hay	22.3	0.5	32.2	9.4	4.2	68.6	86.0	9.5	95.6	-27.0
Rye	22.3	1.3	0.0	9.4	4.2	37.2	69.2	7.4	76.5	-39.3

Potentials

published article, please

follow the QR code