With a rapidly growing population, Ethiopia needs to increase food production by at least one million metric tons, in grain equivalent.

Soil degradation is a major production constraint in the highlands and caused by:
- Soil erosion: 137 tons ha⁻¹ yr⁻¹
- Low soil organic matter content: < 5% in the topsoil
- Soil acidity: 6 million ha (43% of agricultural land); 3 million ha strongly acidic (pH < 5.5)
- Continuous cropping, residue removal, little and unbalanced fertilizer inputs and lack of knowledge about ISFM are contributing to low soil productivity
- National Ø yields: wheat 2.7 tons ha⁻¹, maize 3.9 tons ha⁻¹, teff 1.7 tons ha⁻¹ and Faba bean 2.1 tons ha⁻¹

Introduction

- With a rapidly growing population, Ethiopia needs to increase food production by at least one million metric tons, in grain equivalent
- Soil degradation is a major production constraint in the highlands and caused by:

Results

- In non-acidic soils, grain yields were increased by 61% for teff, 53% for wheat and maize, and 60% for Faba bean (P ≤ 0.01) (Figure 1).

Methods

- The project was implemented in 42 districts in Amhara, Oromia and Tigray regions from 2016 to 2018
- ISFM technologies include:
 - 1) improved seed, 2) line seeding, 3) organic amendments (compost/vermicompost, green manure and farmyard manure), 4) inorganic fertilizer, 5) Faba bean with rhizobia and 6) lime in acidic soils
 - Combinations of locally-tested and adopted technologies were used (lime is key and necessary in acidic soils)
- Activities were implemented through participatory on-farm demonstrations
 - Two-plot design (ISFM and farmer practice)
 - Approaches used for learning and extension:
 - Community-level participatory planning and evaluation
 - Farmers field school (FFS)
 - Farmers research and extension group (FREG)
- Number of sampled demonstration fields: 1252
- Data was analyzed following a linear mixed model fit by restricted maximum likelihood using R package lme4
 - Years and districts were used as random factors

Conclusion

- Simultaneous use of ISFM technologies showed significant synergistic effects in improving productivity of crops
- Application of lime is a prerequisite to utilize potential benefits of ISFM technologies in acidic soils
- Facilitating learning and farmer-to-farmer extension through FFS and FREGs enhanced adoption of ISFM (by 240,000 farmers across the regions)
- The ISFM approach is being institutionalized in the national and regional extension packages
- ISFM approach is important to maintain soil fertility and ensure sustainable agricultural production and food security in the highlands of Ethiopia

Acknowledgments

The project is funded by the BMZ under the initiative One World-No Hunger and implemented by joint collaboration of Ethiopian Ministry of Agriculture, regional bureaus of agriculture and GIZ. District offices of agriculture are highly acknowledged for executing the on-farm demonstrations and data collection.

Contact: Steffen Schulz, steffen.schulz@giz.de and Haile Deressa, haile.deressa@giz.de

Figure 1: Impact of ISFM on grain yields in non-acidic soils

Figure 2: Impact of ISFM on grain yields in acidic soils