

Tropentag, September 18-20, 2019, Kassel

"Filling gaps and removing traps for sustainable resource management"

Estimating Rumen Undegradable Protein from Proximate Nutrient, Fiber Fractions, and *in-vitro* Fermentation of Tropical Feedstuffs

KHATERINE SALAZAR-CUBILLAS, UTA DICKHOEFER

University of Hohenheim, Animal Nutrition and Rangeland Management in the Tropics and Subtropics, Germany

Abstract

Estimates of rumen undegradable crude protein (RUP) are a prerequisite in feed evaluation and nutrient recommendation systems. The in-situ method is the reference method used for RUP determination. However, this method is expensive, time-consuming, and requires fistulated animals. Therefore, this study aims to predict the RUP of tropical feedstuffs from proximate nutrients, fiber fractions, and rumen in-vitro feed fermentation characteristics.

A total of 46 tropical feedstuffs, namely, 6 concentrates and by-products, 17 forage legumes, and 23 forage grasses, were used to develop RUP prediction equations. With use of the software Minitab (2018), stepwise linear regression was performed and the determination coefficient (\mathbb{R}^2) was calculated for identified RUP equations at runnen passage rates of 2, 5, and 8%/h.

The dataset included information on (arithmetic mean±standard deviation): concentrations (per kg of dry matter [DM]) of organic matter (OM; 902 ± 38.9 g), crude protein (CP; 160 ± 87.3 g), neutral detergent fiber (490 ± 132.1 g), acid detergent fiber (287 ± 86.3 g), acid detergent lignin (48 ± 28.8 g), digested OM (0.6 ± 0.1 g kg⁻¹ OM), and metabolisable energy (10 ± 1.9 MJ kg⁻¹ DM), as well as cumulative gas production (GP) during 24h of *in-vitro* incubation (32 ± 8.3 ml/200 mg DM) and *in-situ* RUP proportion (per kg CP) at rumen passage rates of 2%/h (228 ± 90.8 g), 5%/h (299 ± 104.0 g), and 8%/h (342 ± 110.6 g).

The CP concentration and GP were good predictors of the proportion of RUP across all feedstuffs. The CP concentration accounted for 60, 72, and 77 % and the GP for 14, 7, and 4 % of the variability in the RUP proportion at runnen passage rates of 2, 5, and 8%/h, respectively. The following models were developed (coefficient±mean standard error):

 $\begin{aligned} & \text{RUP } 2\%/\text{h} = (40.9\pm8.5 + 0.3\pm0.1\times\text{CP} - 1.5\pm0.3\times\text{GP})\times1000/\text{CP} \ (\text{R}^2=0.74; \ p<0.01), \\ & \text{RUP } 5\%/\text{h} = (34.1\pm10.6 + 0.4\pm0.1\times\text{CP} - 1.4\pm0.4\times\text{GP})\times1000/\text{CP} \ (\text{R}^2=0.80; \ p<0.01), \\ & \text{RUP } 8\%/\text{h} = (25.2\pm12.5 + 0.4\pm0.1\times\text{CP} - 1.3\pm0.4\times\text{GP})\times1000/\text{CP} \ (\text{R}^2=0.81; \ p<0.01), \end{aligned}$

where RUP is in g kg⁻¹ CP, CP is in g kg⁻¹ DM, and GP is in ml/200 mg DM. In conclusion, the RUP proportions of tropical ruminant feedstuffs can be predicted from CP concentration and GP.

Keywords: In-vitro fermentation, tropical feedstuffs, undegradable crude protein

Contact Address: Khaterine Salazar-Cubillas, University of Hohenheim, Animal Nutrition and Rangeland Management in the Tropics and Subtropics, Fruwirthstrasse 31, 70599 Stuttgart, Germany, e-mail: khaterine.salazar-cubillas@uni-hohenheim.de