

Tropentag, September 18-20, 2019, Kassel

"Filling gaps and removing traps for sustainable resource management"

Reducing Forest Degradation: Energy Self-Sufficiency for Smallholder Farmers via Agroforestry Systems in Semi-Arid Tanzania

Johannes Hafner¹, Götz Uckert¹, Harry Hoffmann¹, Stefan Sieber¹, Anthony Kimaro²

¹Leibniz Centre for Agric. Landscape Res. (ZALF), PB 2, AG SUSLAND, Germany ²World Agroforestry Centre (ICRAF), Tanzania Country Programme, Tanzania

Abstract

High dependency on firewood to meet households' cooking energy demand is one driver of forest degradation in rural Tanzania. In order to be energy-independent from external firewood sources small-scale farmers may take measures such as on-farm firewood supply as well as the use of energy-efficient cooking to balance domestic firewood consumption. We used the "controlled cooking test" protocol to determine the firewood consumption of three-stone-fire stoves and energy-efficient improved cooking stoves. We assessed the onfarm firewood production potential of *Gliricidia sepium*. In total we analysed 3 blocks with two intercropping treatments each with a plot size of 256 m²: maize and *G. sepium* (treatment 1), and maize, pigeonpea and *G. sepium* (treatment 2). The *G. sepium* shrubs were planted in 2014 with a spacing of 4 x 4 m². For treatment 1, maize and *G. sepium* the wood biomass production was 36.7 kg (SD 12.3) in 2018, and 129.7 kg (SD 71.4) per 256 m² in 2019. For treatment 2, the wood biomass production was 19.7 kg (SD 1.6) in 2018, and 70.0 kg (SD 15.2) per 256 m² in 2019. The extrapolated data showed a firewood production potential of treatment 1 of 1432.7 kg, and of 767.8 kg for treatment 2 in 2018; in 2019 the potential area 5066.1 kg and 2731.8 kg per hectare.

The annual G. sepium firewood consumption of a five-head household to meet its cooking energy demand is 1298 kg with improved cooking stoves and 1815 kg with three-stone fire stoves. To determine the firewood self-sufficiency rate, we calculated the ratio of firewood production potential and consumption. In 2018, 88.3% (treatment 1) and 47.3% (treatment 2) with improved cooking stoves and 63.1% (treatment 1) and 33.8% (treatment 2) with three-stone-fire stoves of households' cooking energy demand could be covered by firewood from intercropped G. sepium. In 2019, the on-farm firewood production surpassed the demand: 312.2% (treatment 1) and 168.4% (treatment 2) with improved cooking stoves as well as 223.3% (treatment 1) and 120.4% (treatment 2) with three-stone-firewood of the households' cooking energy demand could be covered.

Keywords: Energy self-sufficiency, *Gliricidia sepium*, improved cooking stoves, on-farm firewood, semi-arid Tanzania, three-stone-fire stoves

Contact Address: Johannes Hafner, Humboldt-Universität zu Berlin, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences (ADTI), Invalidenstraße 42, 10099 Berlin, Germany, e-mail: johanneshafner@gmx.net