

Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute) (490)

Diffusive and Biochemical Contributions to Shade-Induced Alterations of Photosynthesis of Rice During the Reproductive Phase

Marc Schmierer, Oliver Knopf, Folkard Asch

University of Hohenheim, Garbenstraße 13, 70599 Stuttgart, Germany

Background

Tree intercropping is a promising approach replenish poor soils, mitigate drought events and prevent erosion. However, cereals like rice show large reductions in yield when intercropped within trees. This often attributed to is tree-crop fact competition for nutrients, soil moisture and light.

	Heading	Flowering	Ripening			
	⊢−○ −−1	⊢₀⊣	F-0-1			
hade	H-H	•	Ю			

Conclusions

Photosynthesis of flag leaves was strongly decoupled from whole plant yield

We therefore combined a yield component analysis of rice plants grown in a climate chamber experiment under 2 different levels of shade (50 and 75 percent compared to a control treatment) and 2 levels of nitrogenwith an analysis limiting supply of components of flag leaves.

Objectives

- How shade and limited N-supply affect photosynthesis throughout the reproductive phase
- photosynthesis changes in are reflected in yield formation or yield component adjustment

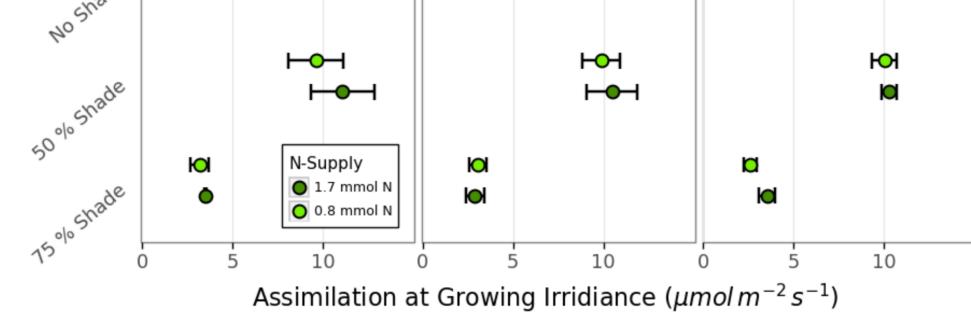
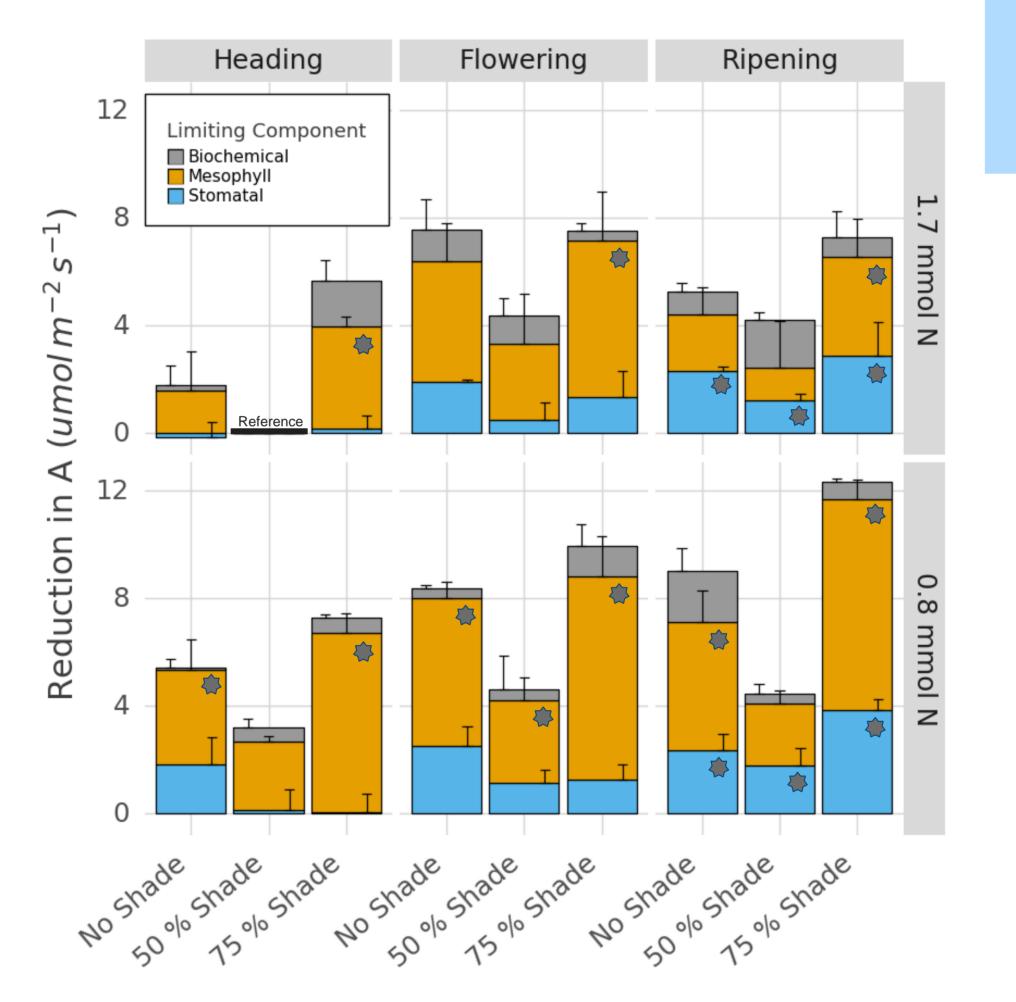
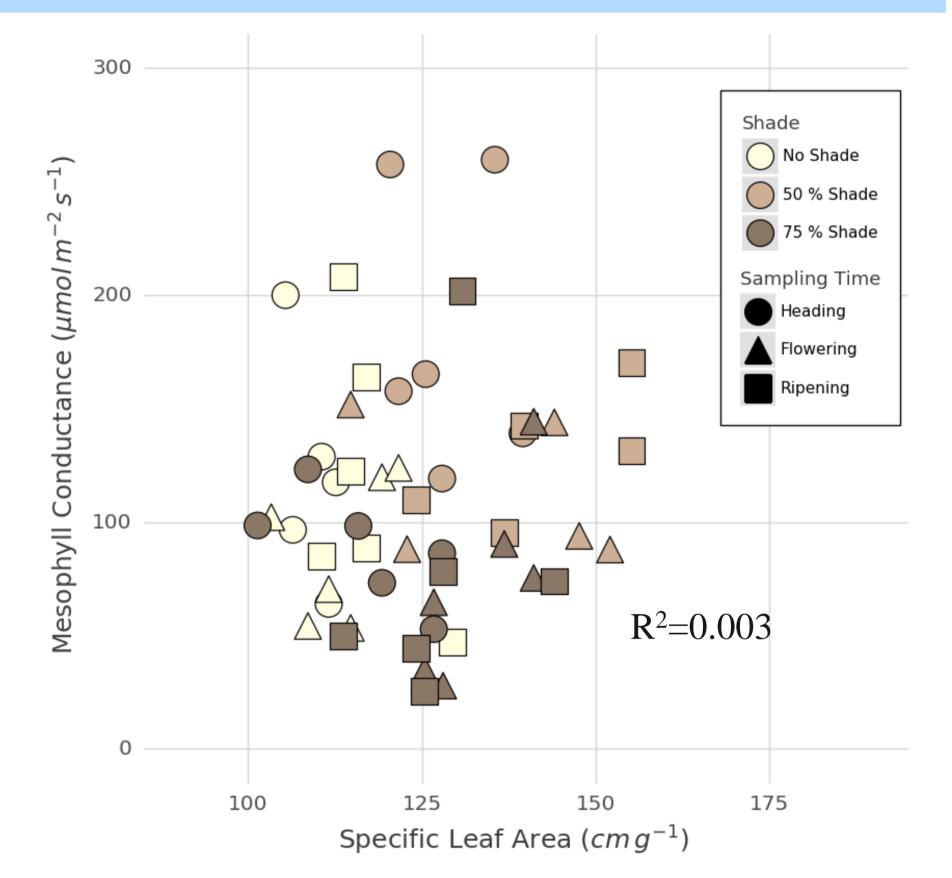




Fig. 1: Photosynthesis rates of rice plants grown under different light conditions and nitrogen supply rates. performed Measurements under were growing irradiances.

formation.

- Adjusting mesophyll conductance is part of a compensation mechanism to shade.
- No indication that a change in leaf thickness due to aging or light adaption was causative for the dynamics in g_m , since an underlying relationship between SLA and g_m was not detectable.
- Research should focus on mechanisms adjustment involved mesophyll in conductance

contribution different The Of the limitations to changes in photosynthesis

Results

- Assimilation under growing irradiances stays remarkably constant under low shade, although yield loss was around 80 % (Fig. 1 & Table 1).
- Mesophyll conductance was the main contributor to PS reduction under light saturated photosynthesis (Fig. 2)
- Under low shade, tiller number was the main contributor to yield loss, where under strong shad contributed relativ (Table 1).
- Dynamics in g_m leaf thickness (Fig

Fig.2: Contribution of different limiting components to the decline in light saturated photosynthesis of shaded and non-shaded rice plants measured during 3 phenological stages. Stars indicate significant differences to the reference value (low shade and high N-supply at heading stage).

Fig. 3: Mesophyll conductance and SLA of shaded and non-shaded rice plants measured during 3 phenological stages.

Table 1: relative yield loss and contribution of yield components to yield loss of rice plants grown under different irradiances and nitrogen levels.

Contribution to Relative Yield Loss

ada all viald as mananata									
ade, all yield components tively equally to yield loss	Nitrogen	Light	Relative	Nr. Of	Prod.	Kernels	Spikelet	Average	
lively equally to yield 1055			Yield Loss	Tillers	Tillers	per	Filling	Kernel	
						Panicle		weight	
m were nor correlated to		Full light	-	-	_	_	_	-	
Fig. 3)	Full	50 % Shade	0.74	0.58	0.03	0.13	0.04	0.22	
		75 % Shade	1.00	0.17	0.22	0.21	0.21	0.18	
		Full light	0.01	-0.42	0.31	-0.12	0.08	0.06	
	Half	50 % Shade	0.80	0.49	0.13	0.04	0.12	0.21	
		75 % Shade	1.00	0.19	0.20	0.16	0.22	0.22	

Materials and Methods

>54 plants of a dwarf rice genotype (Id-18h) were grown hydroponically in 18 pots placed in a climate chamber.

- Shading took place via open-top PVC-pipes coated with highly reflected foil and covered with different meshes.
- \succ Nitrogen levels were adjusted via the nutrient solution. Treatments started at panicle initiation.
- Sampling and gas exchange measurements took place during 3 different phenological stages where one plant out of each pot was sampled.

➤Gas exchange of flag leaves was measured with a GFS-3000 (Heinz Walz GmbH, Germany).

>A-Ci curves were recorded and biochemical parameters were estimated via a curve fitting method described by Moualeu-Ngangue et al. (2016).

Photosynthetic limitations were measured under saturating light conditions and calculated as described by Grassi and Magnani (2005).

➢Gas exchange data were analyzed via a mixed model considering the 18 pots as a random effect.

